diff --git a/README.md b/README.md index 130b998..367cdd6 100644 --- a/README.md +++ b/README.md @@ -87,7 +87,7 @@ Q_i^j = \{[0; \mathbf{\alpha}]: \mathbf{\alpha} \in [1, i - j + 1]^j, \sum_{k=1 (The exact value of $`B_{t,i}`$ is just for completeness and doesn't matter for the following proof.) It's clear that $`\frac{\partial y_t}{\partial x_l}|_{l < t} = B_{t, t-l}`$ and $\frac{\partial y_t}{\partial x_t} = 1$. -Our target, $\frac{\partial \mathcal{L}}{\partial x_t}$, depends on all future outputs $y_{t+i}|_{i \geq 1}$, equals to (equation 3) +Our target, $\frac{\partial \mathcal{L}}{\partial x_t}$, depends on all future outputs $y_{t+i}|_{i \geq 1}$, equals (equation 3) ```math \frac{\partial \mathcal{L}}{\partial x_t} = \frac{\partial \mathcal{L}}{\partial y_t} @@ -95,7 +95,7 @@ Our target, $\frac{\partial \mathcal{L}}{\partial x_t}$, depends on all future o = \frac{\partial \mathcal{L}}{\partial y_t} + \sum_{i = 1}^{T - t} \frac{\partial \mathcal{L}}{\partial y_{t+i}} B_{t+i,i}. ``` -Interestingly, the time-varying FIR formulation (Eq. 2) equals to Eq. 3 if we set $x_t := \frac{\partial \mathcal{L}}{\partial y_{T - t + 1}}$ and $B_{t, i} := B_{t + i, i}$. +Interestingly, the time-varying FIR formulation (Eq. 2) equals Eq. 3 if we set $x_t := \frac{\partial \mathcal{L}}{\partial y_{T - t + 1}}$ and $B_{t, i} := B_{t + i, i}$. Moreover, we can get $B_{t + i, i}$ by setting $`A_{t,i} := A_{t+i,i}`$, implies that ```math \frac{\partial \mathcal{L}}{\partial x_t}