THIS MODULE HAS BEEN DEPRECATED AND V'S RAND MODULE SHOULD BE USED INSTEAD!
An all purpose random library written in V.
- All variate functions possible.
- Generate random
int
andstring
with ease. - range functions for
int
andf32
. - Array functions like
shuffle
,choose
,sample
etc. - Makes life easier sorta
- Many more features coming soon!
- Via
git clone
git clone https://github.com/Delta456/random
- Via
v install
v install random
- Via
vpkg
vpkg install random
// struct for `triangular()`
struct Triangular {
mut:
low f32 = 1.0
high f32 = 1.0
mode int = 1
}
// struct for `int_range()`
struct IntRange {
start int
stop int
step int = 1
}
// struct for `float_range()`
struct FloatRange {
start f32
stop f32
step f32 = 1.0
}
// normal_variate is the normal distribution where mu is the
// mean, and stigma is the standard deviation
fn normal_variate(mu, stigma f32) f32
// expo_variate is the expovariate distribution where lambda is // 1.0 divided by the desired mean. It should be nonzero.
// return values range from 0 to positive infinity if lambda is // positive else negative
fn expo_variate(lambda f32) f32
// weibull distribution where alpha is the scale parameter and
// beta is the shape parameter
fn weibull_variate(alpha, beta f32) f32
// lognorm_variate is the log nomral distribution If you take
// the natural logarithm of this distribution, you'll get a
// normal distribution with mean mu and standard deviation
//sigma. mu can have any value, and sigma must be greater than
// zero
fn lognorm_variate(mu, stigma f32) f32
// gamma_distribution is the gamma distribution conditions on the parameters are alpha > 0 and beta > 0.
// conditions on the parameters are alpha > 0 and beta > 0.
// The probability distribution function is:
// math.pow(x, (alpha - 1)) * math.exp(-x / beta)
// pdf(x) = --------------------------------------
// math.gamma(alpha) * math.pow(beta, alpha)
fn gamma_variate(alpha, beta f32) f32
// beta_variate is the beta distribution parameters alpha > 0
// and beta > 0 return values range between 0 and 1
fn beta_variate(alpha, beta f32) f32
// pareto_variate is pareto distribution. alpha is the shape
// paramter.
fn pareto_variate(alpha f32) f32
// vommeises_variate is the circular data distribution
// where mu is the mean angle, expressed in radians between 0 and 2*pi, and
// kappa is the concentration parameter, which must be greater than or
// equal to zero. If kappa is equal to zero, this distribution reduces
// to a uniform random angle over the range 0 to 2*pi
// mu: mean angle (in radians between 0 and 2*pi)
// kappa: concentration parameter kappa (>= 0)
// if kappa == 0 then generate uniform random angle
fn vommeises_variate(mu, kappa f32) f32
// triangular is the triangular distribution. continuous
// distribution bounded by given lower and upper limits, and
// having a given mode value in-between
fn triangular(mut tri Triangular) f32
// uniform returns a random number between the range [a, b) or
// [a, b] depending on rounding
fn uniform(a, b f32) f32
// int_range returns a random int between the specified range
fn int_range(range IntRange) int
// float_range returns a random float upon the given range
fn float_range(range FloatRange) f32
// numeric returns a number with n digits long
fn numeric(n int) int
// bool returns a random bool
fn bool() bool
// shuffle returns the new shuffled array
fn shuffle<T>(arr []T) []T
// sample returns the new k-sized array
// no_repetitions must be true when no repetitions are needed
// else it must be false
fn sample<T>(arr []T, k int) []T
// choose returns a random element from the array
fn choose<T>(arr []T) T
// string returns a random string of n length
fn string(n int) string
// string_alpha returns an alpha string of n length
fn string_alpha(n int) string
See math, random and string for usage.
I thank Python Software Foundation for their work on random library which helped me to port variate functions.
Licensed under MIT