-
Notifications
You must be signed in to change notification settings - Fork 0
/
policy_gradients.py
90 lines (71 loc) · 2.71 KB
/
policy_gradients.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#Modified this code - https://github.com/DeepReinforcementLearning/DeepReinforcementLearningInAction/blob/master/Chapter%204/Ch4_book.ipynb
import numpy as np
import gym
import torch
from torch import nn
import matplotlib.pyplot as plt
env = gym.make('CartPole-v0')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
learning_rate = 0.0001
episodes = 10000
gamma = 0.99
def discount_rewards(reward, gamma = 0.99):
return torch.pow(gamma, torch.arange(len(reward)))*reward
def normalize_rewards(disc_reward):
return disc_reward/(disc_reward.max())
class NeuralNetwork(nn.Module):
def __init__(self, state_size, action_size):
super(NeuralNetwork, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear_relu_stack = nn.Sequential(
nn.Linear(state_size, 300),
nn.ReLU(),
nn.Linear(300, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, action_size),
nn.Softmax()
)
def forward(self,x):
x = self.linear_relu_stack(x)
return x
model = NeuralNetwork(env.observation_space.shape[0], env.action_space.n).to(device)
opt = torch.optim.Adam(params = model.parameters(), lr = learning_rate)
score = []
for i in range(episodes):
print("i = ", i)
state = env.reset()
done = False
transitions = []
tot_rewards = 0
iter = 0
while not done:
act_proba = model(torch.from_numpy(state).to(device))
action = np.random.choice(np.array([0,1]), p = act_proba.cpu().data.numpy())
next_state, reward, done, info = env.step(action)
tot_rewards += np.power(gamma, iter) * reward
transitions.append((state, action, tot_rewards))
state = next_state
iter += 1
if i%50==0:
print("i = ", i, ",steps = ", iter)
score.append(iter)
reward_batch = torch.Tensor([r for (s,a,r) in transitions]).flip(dims = (0,))
# print("reward_batch = ", reward_batch)
# disc_rewards = discount_rewards(reward_batch)
# print("disc_rewards = ", disc_rewards)
nrml_disc_rewards = normalize_rewards(reward_batch).to(device)
state_batch = torch.Tensor([s for (s,a,r) in transitions])
action_batch = torch.Tensor([a for (s,a,r) in transitions]).to(device)
pred_batch = model(state_batch.to(device))
# print("pred_batch ", pred_batch)
prob_batch = pred_batch.gather(dim=1, index=action_batch.long().view(-1, 1)).squeeze()
# print("prob_batch = ", prob_batch)
loss = -(torch.sum(torch.log(prob_batch)*nrml_disc_rewards))
opt.zero_grad()
loss.backward()
opt.step()
plt.scatter(np.arange(len(score)), score)
plt.show()