Skip to content

Commit

Permalink
Merge pull request #36 from Banana1530/pgloopsettingwrapper
Browse files Browse the repository at this point in the history
PG loop argument wrapper
  • Loading branch information
Banana1530 authored Jun 28, 2019
2 parents 08196ad + 3f81cf8 commit a43b7ff
Show file tree
Hide file tree
Showing 7 changed files with 424 additions and 167 deletions.
68 changes: 60 additions & 8 deletions R/moma_arguments.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ empty <- function() {
#' \deqn{\lambda \sum \| x_{i} \| ,}
#' where \eqn{\lambda} is set by \code{lambda_u/v} in the function \code{moma_svd}.
#'
#' @param ... Forces users to specify all arguments by name.
#' @param non_negative a boolean value. Set \code{TRUE} to add non-negativity
#' constraint.
#'
Expand All @@ -23,7 +24,11 @@ empty <- function() {
#' @examples
#' lasso(non_negative = FALSE)
#' @export
lasso <- function(non_negative = FALSE) {
lasso <- function(..., non_negative = FALSE) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}

if (!is_logical_scalar(non_negative)) {
moma_error(sQuote("non_negative"), " should be a boolean value.")
}
Expand All @@ -40,6 +45,7 @@ lasso <- function(non_negative = FALSE) {
#' determined by \eqn{\gamma}. See Zhang, Cun-Hui. "Nearly unbiased variable
#' selection under minimax concave penalty." The Annals of statistics 38.2 (2010): 894-942.
#'
#' @param ... Forces users to specify all arguments by name.
#' @param gamma non-convexity. Must be larger than 1.
#' @param non_negative a boolean value. Set to \code{TRUE} to add non-negativity
#' constraint.
Expand All @@ -50,7 +56,11 @@ lasso <- function(non_negative = FALSE) {
#' @examples
#' mcp(gamma = 3, non_negative = FALSE)
#' @export
mcp <- function(gamma = 3, non_negative = FALSE) {
mcp <- function(..., gamma = 3, non_negative = FALSE) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}

if (!is_logical_scalar(non_negative)) {
moma_error(sQuote("non_negative"), " should be a boolean value.")
}
Expand All @@ -75,6 +85,7 @@ mcp <- function(gamma = 3, non_negative = FALSE) {
#' via nonconcave penalized likelihood and its oracle properties." Journal of
#' the American statistical Association 96.456 (2001): 1348-1360.
#'
#' @param ... Forces users to specify all arguments by name.
#' @param gamma non-convexity. Must be larger than 2.
#' @param non_negative a boolean value. Set to \code{TRUE} to add non-negativity
#' constraint.
Expand All @@ -85,7 +96,11 @@ mcp <- function(gamma = 3, non_negative = FALSE) {
#' @examples
#' scad(gamma = 3.7, non_negative = FALSE)
#' @export
scad <- function(gamma = 3.7, non_negative = FALSE) {
scad <- function(..., gamma = 3.7, non_negative = FALSE) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}

if (!is_logical_scalar(non_negative)) {
moma_error(sQuote("non_negative"), " should be a boolean value.")
}
Expand Down Expand Up @@ -128,6 +143,7 @@ slope <- function() {
#' where \eqn{\lambda} is set by \code{lambda_u/v} in the function \code{moma_svd}, \eqn{\|x_g\|} is
#' the vector comprised of elements of \eqn{x} picked out by indeces set \eqn{g}.
#'
#' @param ... Forces users to specify all arguments by name.
#' @param g a vector of integer or characters, or a factor itself. It gets transformed
#' to factor eventually to indicate grouping.
#' @param non_negative a boolean value. Set to \code{TRUE} to add non-negativity
Expand All @@ -140,7 +156,11 @@ slope <- function() {
#' # This sets every three adjacent parameters as a group.
#' grplasso(g = rep(1:10, each = 3), non_negative = FALSE)
#' @export
grplasso <- function(g, non_negative = FALSE) {
grplasso <- function(..., g, non_negative = FALSE) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}

if (!is_logical_scalar(non_negative)) {
moma_error(sQuote("non_negative"), " should be a boolean value.")
}
Expand All @@ -157,6 +177,7 @@ grplasso <- function(g, non_negative = FALSE) {
#' Use this function to set the penalty function as fused lasso
#' \deqn{\lambda \sum \| x_{i} - x_{i-1} \|,}
#' where \eqn{\lambda} is set by \code{lambda_u/v} in the function \code{moma_svd}.
#' @param ... Forces users to specify all arguments by name.
#' @param algo a string being either "path" or "dp". Defaults to "path". Partial matching
#' is supported. Two solving algorithms
#' are provided. When "path" is chosen, the algorithm by
Expand All @@ -173,7 +194,10 @@ grplasso <- function(g, non_negative = FALSE) {
#' @examples
#' fusedlasso()
#' @export
fusedlasso <- function(algo = c("path", "dp")) {
fusedlasso <- function(..., algo = c("path", "dp")) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}
# fused lasso

# Two options for solving the proximal operator
Expand Down Expand Up @@ -203,6 +227,7 @@ fusedlasso <- function(algo = c("path", "dp")) {
#' Tibshirani, Ryan J. "Adaptive piecewise polynomial estimation via trend
#' filtering." The Annals of Statistics 42.1 (2014): 285-323.
#'
#' @param ... Forces users to specify all arguments by name.
#' @param l1tf_k use (k+1)-difference matrix in trend filtering. Note \eqn{k = 0}
#' implies piecewise constant, \eqn{k=1} implies piecewise linear, \eqn{k=2}
#' piecewise quadratic etc.
Expand All @@ -212,7 +237,10 @@ fusedlasso <- function(algo = c("path", "dp")) {
#' @examples
#' l1tf(l1tf_k = 1)
#' @export
l1tf <- function(l1tf_k = 1) {
l1tf <- function(..., l1tf_k = 1) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}
# l1 linear trend filtering
arglist <- list(P = "L1TRENDFILTERING", l1tf_k = l1tf_k)
class(arglist) <- "moma_sparsity"
Expand All @@ -226,14 +254,18 @@ l1tf <- function(l1tf_k = 1) {
#' where \eqn{\lambda_} is set by \code{lambda_u/v} in the function \code{moma_svd}, and \eqn{\lambda_2}
#' is specified in here.
#'
#' @param ... Forces users to specify all arguments by name.
#' @param lambda2 the level of penalty on the absolute values of the coefficients
#'
#' @return a \code{moma_sparsity} object, which is a list containing the value of \code{lambda_2}.
#'
#' @examples
#' spfusedlasso(lambda2 = 2)
#' @export
spfusedlasso <- function(lambda2) {
spfusedlasso <- function(..., lambda2) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}
arglist <- list(P = "SPARSEFUSEDLASSO", lambda2 = lambda2)
class(arglist) <- "moma_sparsity"
return(arglist)
Expand All @@ -245,6 +277,7 @@ spfusedlasso <- function(lambda2) {
#' \deqn{\lambda \sum w_{ij} \| x_{i} - x_{j} \|,}
#' where \eqn{\lambda} is set by \code{lambda_u/v} in the function \code{moma_svd}.
#'
#' @param ... Forces users to specify all arguments by name.
#' @param w a symmetric square matrix. \code{w[i][j]} is the \eqn{w_{ij}} described above.
#' @param ADMM a boolean value. Set to \code{TRUE} to use ADMM, set to \code{FALSE} to use AMA.
#' @param acc a boolean value. Set to \code{TRUE} to use the accelereated version of the algorithm.
Expand All @@ -257,9 +290,12 @@ spfusedlasso <- function(lambda2) {
#' @examples
#' cluster(w = matrix(rep(1, 9), 3), ADMM = FALSE, acc = FALSE, eps = 1e-10)
#' @export
cluster <- function(w = NULL, ADMM = FALSE,
cluster <- function(..., w = NULL, ADMM = FALSE,
acc = FALSE,
eps = 1e-10) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}
# fused lasso
if (!is.matrix(w) || is.null(w) || dim(w)[1] != dim(w)[2]) {
moma_error("`w` should be a square matrix.")
Expand All @@ -275,3 +311,19 @@ cluster <- function(w = NULL, ADMM = FALSE,
class(arglist) <- "moma_sparsity"
return(arglist)
}

moma_pg_settings <- function(..., EPS = 1e-10, MAX_ITER = 1000,
EPS_inner = 1e-10, MAX_ITER_inner = 1e+5,
solver = c("ista", "fista", "onestepista")) {
if (length(list(...)) != 0) {
moma_error("Please specify the correct argument by name.")
}
solver <- match.arg(solver)
arglist <- list(
EPS = EPS, MAX_ITER = MAX_ITER,
EPS_inner = EPS_inner, MAX_ITER_inner = MAX_ITER_inner,
solver = toupper(solver)
)
class(arglist) <- "moma_pg_settings"
return(arglist)
}
22 changes: 12 additions & 10 deletions R/moma_svd.R
Original file line number Diff line number Diff line change
Expand Up @@ -67,9 +67,7 @@ moma_svd <- function(
X,
u_sparsity = empty(), v_sparsity = empty(), lambda_u = 0, lambda_v = 0, # lambda_u/_v is a vector or scalar
Omega_u = NULL, Omega_v = NULL, alpha_u = 0, alpha_v = 0, # so is alpha_u/_v
EPS = 1e-10, MAX_ITER = 1000,
EPS_inner = 1e-10, MAX_ITER_inner = 1e+5,
solver = "ista",
pg_setting = moma_pg_settings(),
k = 1, # number of pairs of singular vecters
select = c("gridsearch", "nestedBIC")) {
if (!inherits(alpha_u, c("numeric", "integer")) ||
Expand Down Expand Up @@ -116,12 +114,6 @@ moma_svd <- function(
# smoothness
alpha_u = alpha_u,
alpha_v = alpha_v,
# algorithm parameters
EPS = EPS,
MAX_ITER = MAX_ITER,
EPS_inner = EPS_inner,
MAX_ITER_inner = MAX_ITER_inner,
solver = toupper(solver),
k = k
)

Expand Down Expand Up @@ -157,6 +149,15 @@ moma_svd <- function(
)
}

# PG loop settings
if (!inherits(pg_setting, "moma_pg_settings")) {
moma_error(
"pg_setting penalty should be of class ",
sQuote("moma_pg_settings"),
". Try using, for example, `pg_setting = moma_pg_settings(MAX_ITER=1e+4)`."
)
}

# Pack all argument into a list
# First we check the smoothness term argument.
algo_settings_list <- c(
Expand All @@ -166,7 +167,8 @@ moma_svd <- function(
Omega_v = check_omega(Omega_v, alpha_v, p),
prox_arg_list_u = add_default_prox_args(u_sparsity),
prox_arg_list_v = add_default_prox_args(v_sparsity)
)
),
pg_setting
)

if (is_multiple_para) {
Expand Down
4 changes: 3 additions & 1 deletion src/moma.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,9 @@ MoMA::MoMA(const arma::mat &i_X, // Pass X_ as a reference to avoid copy
MoMALogger::info("Initializing MoMA object:")
<< " lambda_u " << lambda_u << " lambda_v " << lambda_v << " alpha_u " << alpha_u
<< " alpha_v " << alpha_v << " P_u " << Rcpp::as<std::string>(i_prox_arg_list_u["P"])
<< " P_v " << Rcpp::as<std::string>(i_prox_arg_list_v["P"]);
<< " P_v " << Rcpp::as<std::string>(i_prox_arg_list_v["P"]) << " EPS " << i_EPS
<< " MAX_ITER " << i_MAX_ITER << " EPS_inner " << i_EPS_inner << " MAX_ITER_inner "
<< i_MAX_ITER_inner << " solver " << i_solver;
// Step 2: Initialize to leading singular vectors
//
// MoMA is a regularized SVD, which is a non-convex (bi-convex)
Expand Down
18 changes: 9 additions & 9 deletions tests/testthat/test_BIC_gird_mixed.R
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ lambda_u <- seq(0.3, 1, length.out = n_lambda_u)
lambda_v <- seq(0.3, 1, length.out = n_lambda_v)


arg_list <- list(
public_arg_list <- list(
X,
alpha_u = alpha_u, alpha_v = alpha_v,
Omega_u = second_diff_mat(3), Omega_v = second_diff_mat(4),
Expand All @@ -28,7 +28,7 @@ test_that("BIC search returns correct-sized grid: four grid requests", {
result <- do.call(
testnestedBIC,
c(
arg_list,
public_arg_list,
list(
selection_criterion_alpha_u = 0, # grid
selection_criterion_alpha_v = 0, # grid
Expand Down Expand Up @@ -58,7 +58,7 @@ test_that("BIC search returns correct-sized grid: three grid requests", {
result2 <- do.call(
testnestedBIC,
c(
arg_list,
public_arg_list,
list(
selection_criterion_alpha_u = 0, # grid
selection_criterion_alpha_v = 0, # grid
Expand All @@ -83,7 +83,7 @@ test_that("BIC search returns correct-sized grid: three grid requests", {
result2 <- do.call(
testnestedBIC,
c(
arg_list,
public_arg_list,
list(
selection_criterion_alpha_u = 1,
selection_criterion_alpha_v = 0, # grid
Expand All @@ -110,7 +110,7 @@ test_that("BIC search returns correct-sized grid: two grid requests on u", {
result3 <- do.call(
testnestedBIC,
c(
arg_list,
public_arg_list,
list(
selection_criterion_alpha_u = 0, # grid
selection_criterion_lambda_u = 0, # grid
Expand All @@ -137,7 +137,7 @@ test_that("BIC search returns correct-sized grid: two grid requests on different
result4 <- do.call(
testnestedBIC,
c(
arg_list,
public_arg_list,
list(
selection_criterion_alpha_u = 1,
selection_criterion_lambda_u = 0, # grid
Expand All @@ -164,7 +164,7 @@ test_that("BIC search returns correct-sized grid: one grid", {
result4 <- do.call(
testnestedBIC,
c(
arg_list,
public_arg_list,
list(
selection_criterion_alpha_u = 1,
selection_criterion_lambda_u = 1,
Expand All @@ -191,7 +191,7 @@ test_that("BIC search returns correct-sized grid: all BIC search", {
result4 <- do.call(
testnestedBIC,
c(
arg_list,
public_arg_list,
list(
selection_criterion_alpha_u = 1,
selection_criterion_lambda_u = 1,
Expand All @@ -214,7 +214,7 @@ test_that("BIC search returns correct-sized grid: all BIC search", {

test_that("testnestedBIC receivs a vector of length 0", {
arglist <- c(
arg_list,
public_arg_list,
list(
selection_criterion_alpha_u = 1,
selection_criterion_lambda_u = 1,
Expand Down
Loading

0 comments on commit a43b7ff

Please sign in to comment.