-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.py
189 lines (171 loc) · 6.35 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import csv
import os
import random
from torch.utils.data import DataLoader, Dataset
from configs import parse_signal_args
import torch
import numpy as np
args = parse_signal_args()
# random seed
fix_seed = args.random_seed
random.seed(fix_seed)
def load_data():
all_data = []
bd_data = [] # bd所有的卫星数据
gal_data = []
gps_data = []
n = 4 # 四天
file_bd = os.listdir("data/BD/")
file_gps = os.listdir("data/GPS/")
file_gal = os.listdir("data/GAL/")
# 读取所有的BD数据
for i in range(4):
bd = os.listdir("data/BD/" + file_bd[i])
length1 = len(bd) - 1 # 每一个文件中的卫星个数文件个数,BD1数据文件中有几个csv存储数据 还有一个是readme文件
for j in range(length1):
data = []
local1 = "data/BD/" + file_bd[i] + "/" + bd[j] # 每一个卫星的位置
# # 打开CSV文件进行读取
with open(local1, 'r', newline='') as file:
csv_reader = csv.reader(file)
# 逐行读取数据并存储在data列表中
for row in csv_reader:
if len(row) == 0:
continue
row = stringTofloat(row)
for q in range(len(row)):
row[q] = round(row[q], 2)
data.append(row)
if len(data) != 0:
bd_data.append(data) # 存放所有的BD卫星的数据
all_data.append(data)
print(f"BD数据加载完成!一共{len(bd_data)}个卫星")
# 读取所有的GAL数据
for i in range(4):
gal = os.listdir("data/GAL/" + file_gal[i])
length2 = len(gal) - 1 # 每一个文件中的卫星个数文件个数,BD1数据文件中有几个csv存储数据 还有一个是readme文件
for j in range(length2):
data = []
local2 = "data/GAL/" + file_gal[i] + "/" + gal[j]
# # 打开CSV文件进行读取
with open(local2, 'r', newline='') as file:
csv_reader = csv.reader(file)
# 逐行读取数据并存储在data列表中
for row in csv_reader:
row = stringTofloat(row)
data.append(row)
if len(data) != 0:
gal_data.append(data)
all_data.append(data)
print(f"GAL数据加载完成!一共{len(gal_data)}个卫星")
# 读取GPS数据
for i in range(4):
gps = os.listdir("data/GPS/" + file_gps[i])
# print(len(bd))
length3 = len(gps) - 1 # 每一个文件中的卫星个数文件个数,BD1数据文件中有几个csv存储数据 还有一个是readme文件
for j in range(length3):
data = []
local3 = "data/GPS/" + file_gps[i] + "/" + gps[j]
# # 打开CSV文件进行读取
with open(local3, 'r', newline='') as file:
csv_reader = csv.reader(file)
# 逐行读取数据并存储在data列表中
for row in csv_reader:
row = stringTofloat(row)
data.append(row)
if len(data) != 0:
gps_data.append(data)
all_data.append(data)
print(f"GPS数据加载完成!一共{len(gps_data)}个卫星")
print(f"一共{len(all_data)}个卫星")
bd_data = random.sample(bd_data, len(bd_data))
gal_data = random.sample(gal_data, len(gal_data))
gps_data = random.sample(gps_data, len(gps_data))
train_data = []
test_data = []
l = 0.9
l1 = 0.9
train_data.append(bd_data[:int(l * len(bd_data))])
train_data.append(gal_data[:int(l * len(gal_data))])
train_data.append(gps_data[:int(l * len(gps_data))])
test_data.append(bd_data[int(l1 * len(bd_data)):])
test_data.append(gal_data[int(l1 * len(gal_data)):])
test_data.append(gps_data[int(l1 * len(gps_data)):])
tr_data = []
te_data = []
for i in range(len(train_data)):
for l1 in train_data[i]:
tr_data.append(l1)
for i in range(len(test_data)):
for l2 in test_data[i]:
te_data.append(l2)
train_data = tr_data
test_data = te_data
print(f"训练:{len(train_data)}")
print(f"测试:{len(test_data)}")
train = []
test = []
L = args.seq_len
for ls in train_data:
for j in range(0, len(ls), L):
if (j + L) > len(ls):
break
patch = ls[j:j + L]
# if len(patch) != L:
# break
train.append(patch)
print(len(train))
for ls in test_data:
for j in range(0, len(ls), L):
if (j + L) > len(ls):
break
patch = ls[j:j + L]
# if len(patch) != L:
# break
test.append(patch)
print(len(test))
train_x, train_y = get_input(train)
test_x, test_y = get_input(test)
data_train = DataSet(train_x, train_y)
data_test = DataSet(test_x, test_y)
torch.save(data_train, 'data/dataset_train')
torch.save(data_test, 'data/dataset_test')
# train_loader = DataLoader(data_train, batch_size=args.batch_size)
# test_loader = DataLoader(data_test, batch_size=args.batch_size)
# for i, (x, label) in enumerate(train_loader):
# print(x.shape)
# print(label.shape)
# return data_train, data_test
def get_input(X_):
inputs = []
y = []
for x in X_: # L
i = []
v = []
for ss in x:
# print(len(ss))
j = []
j.append(ss[0])
j.append(ss[1])
j.append(ss[2])
j.append(ss[-2])
v = [ss[-1]]
i.append(j)
y.append(v)
inputs.append(i)
return torch.tensor(np.asarray(inputs).astype(np.float32)), torch.LongTensor(np.asarray(y))
# return inputs, y
class DataSet(Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __getitem__(self, item):
return self.x[item], self.y[item]
def __len__(self):
return len(self.x)
def stringTofloat(string_list):
s = []
s.append([float(i) for i in string_list])
s = s[0]
return s
load_data()