https://leetcode.com/problems/consecutive-numbers-sum/
Given a positive integer N, how many ways can we write it as a sum of consecutive positive integers?
Example 1:
Input: 5
Output: 2
Explanation: 5 = 5 = 2 + 3
Example 2:
Input: 9
Output: 3
Explanation: 9 = 9 = 4 + 5 = 2 + 3 + 4
Example 3:
Input: 15
Output: 4
Explanation: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
Note: 1 <= N <= 10 ^ 9.
连续自然数的和其实就是一个公差为1的等差数列的和,设这个数列是x,x+1,x+2,...,x+n,那么这个数列的和是(n+1)x+n(n+1)/2,这个数列的长度是n+1,第一个数字是x,然后就可以从数字长度为1开始逐渐尝试,看N能否分解成为长度为n的等差数列的和,如果可以,那么一定可以求得整数解x使得x=(N-n*(n+1))/(n+1)
class Solution {
public int consecutiveNumbersSum(int N) {
int res = 0;
int n = 0;
while (true) {
int top = N - (n * n + n) / 2;
if (top <= 0) break;
if (top % (n + 1) == 0) {
res++;
}
n++;
}
return res;
}
}