-
Notifications
You must be signed in to change notification settings - Fork 470
/
ppo_dense_sentiments.py
75 lines (60 loc) · 2.73 KB
/
ppo_dense_sentiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset
# with a sentiment reward function
import json
import os
import sys
from typing import List
import torch
from datasets import load_dataset
from transformers import pipeline
import trlx
from trlx.data.default_configs import TRLConfig, default_ppo_config
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
def get_negative_score(scores):
return dict(map(lambda x: tuple(x.values()), scores))["NEGATIVE"]
def main(hparams={}):
# Merge sweep config with default config if given
config = TRLConfig.update(default_ppo_config().to_dict(), hparams)
if torch.cuda.is_available():
device = int(os.environ.get("LOCAL_RANK", 0))
else:
device = -1
sentiment_fn = pipeline(
"sentiment-analysis",
"lvwerra/distilbert-imdb",
top_k=2,
truncation=True,
batch_size=256,
device=device,
)
def dense_reward_fn(samples: List[str], prompts: List[str], outputs: List[str], tokenizer, **kwargs) -> List[float]:
# Reward positively for initially negative then positive review
# Reward functions should never receive padded text except for a single EOS at the end
# Reward function should return token rewards for just the response
first_halves = [".".join(sample.split(".")[: len(sample.split(".")) // 2]) for sample in samples]
negative_first_halves = list(map(get_negative_score, sentiment_fn(first_halves)))
second_halves = [".".join(sample.split(".")[len(sample.split(".")) // 2 :]) for sample in samples]
positive_second_halves = list(map(get_positive_score, sentiment_fn(second_halves)))
text_scores = [[f, s] for f, s in zip(negative_first_halves, positive_second_halves)]
tok_scores = []
for sample, prompt, response, text_score in zip(samples, prompts, outputs, text_scores):
toks = tokenizer(response).input_ids
tok_score = [0] * len(toks)
tok_score[len(tok_score) // 2] = text_score[0]
tok_score[-1] = text_score[1]
tok_scores.append(tok_score)
return tok_scores
# Take few words off of movies reviews as prompts
imdb = load_dataset("imdb", split="train+test")
prompts = [" ".join(review.split()[:4]) for review in imdb["text"]]
trlx.train(
reward_fn=dense_reward_fn,
prompts=prompts,
eval_prompts=["I don't know much about Hungarian underground"] * 256,
config=config,
)
if __name__ == "__main__":
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
main(hparams)