diff --git a/include/cantera/numerics/Newton.h b/include/cantera/numerics/Newton.h index 4db2723b33..1ccaafd671 100644 --- a/include/cantera/numerics/Newton.h +++ b/include/cantera/numerics/Newton.h @@ -29,24 +29,14 @@ class Newton //! Compute the undamped Newton step. The residual function is evaluated //! at `x`, but the Jacobian is not recomputed. - void step(doublereal* x, doublereal* step, int loglevel); + void step(doublereal* x, doublereal* step); //! Compute the weighted 2-norm of `step`. doublereal weightedNorm(const doublereal* x, const doublereal* step) const; int hybridSolve(); - int timestep(); - - /** - * Find the solution to F(X) = 0 by damped Newton iteration. - */ - int solve(int loglevel=0); - - /// Set options. - void setOptions(int maxJacAge = 5) { - m_jacMaxAge = maxJacAge; - } + int solve(double* x, double dt=0); //TODO: implement get methods //nice implementation for steady vs transient below diff --git a/src/numerics/Newton.cpp b/src/numerics/Newton.cpp index 7f24fcc7b3..d64e19ce47 100644 --- a/src/numerics/Newton.cpp +++ b/src/numerics/Newton.cpp @@ -6,8 +6,6 @@ #include "cantera/numerics/Newton.h" #include "cantera/base/utilities.h" -#include - using namespace std; namespace Cantera @@ -38,7 +36,7 @@ Newton::Newton(FuncEval& func) { m_jacobian = DenseMatrix(m_nv, m_nv); m_jacAge = npos; - m_jacMaxAge = 1; + m_jacMaxAge = 5; m_jacRtol = 1.0e-15; m_jacAtol = sqrt(std::numeric_limits::epsilon()); } @@ -74,28 +72,25 @@ void Newton::evalJacobian(doublereal* x, doublereal* xdot) { } // restore solution vector x[n] = xsave; + } - // for constant-valued components: 1 in diagonal position, all 0's in row and column - for (size_t i : m_constantComponents) { - for (size_t j = 0; j < m_nv; j++) { - m_jacobian.value(i,j) = 0; - m_jacobian.value(j,i) = 0; - } - m_jacobian.value(i,i) = 1; + // for constant-valued components: 1 in diagonal position, all 0's in row and column + for (size_t i : m_constantComponents) { + for (size_t j = 0; j < m_nv; j++) { + m_jacobian.value(i,j) = 0; + m_jacobian.value(j,i) = 0; } + m_jacobian.value(i,i) = 1; } - // writelog("\nnew jac:\n"); - // for (int i = 0; i < m_nv; i++) { - // writelog("ROW {} | ", i); - // for (int j = 0; j < m_nv; j++) { - // writelog("{:.5} ", m_jacobian.value(i,j)); - // } - // writelog("\n\n"); - // } - - m_jacAge = 0; + // timestep components + if (m_rdt > 0) { + for (size_t i = 0; i < m_nv; i++) { + m_jacobian.value(i,i) -= m_rdt; + } + } + // factor and save jacobian, will be reused for faster step computation m_jacFactored = m_jacobian; Cantera::factor(m_jacFactored); } @@ -110,7 +105,7 @@ doublereal Newton::weightedNorm(const doublereal* x, const doublereal* step) con return sqrt(square/m_nv); } -void Newton::step(doublereal* x, doublereal* step, int loglevel) +void Newton::step(doublereal* x, doublereal* step) { m_residfunc->eval(0, x, step, 0); for (size_t n = 0; n < m_nv; n++) { @@ -119,13 +114,7 @@ void Newton::step(doublereal* x, doublereal* step, int loglevel) DenseMatrix solvejac = m_jacFactored; try { - //Note: this function takes an unfactored jacobian, then finds its LU factorization before - // solving. Optimization is possible by saving the factored jacobian, since it can be reused. - // Also, the DenseMatrix provided here will be overwritten with the LU factored version, so - // a copy is passed instead in order to preserve the original for reuse. - // Cantera::solve(solvejac, step); Cantera::solveFactored(solvejac, step); - } catch (CanteraError&) { // int iok = m_jac->info() - 1; int iok = -1; //TODO: enable error info @@ -140,60 +129,62 @@ void Newton::step(doublereal* x, doublereal* step, int loglevel) } int Newton::hybridSolve() { - int MAX = 100; + int MAX = 17; int newtonsolves = 0; int timesteps = 0; + // initial state m_residfunc->getState(m_x.data()); copy(m_x.begin(), m_x.end(), m_xsave.begin()); for(int i = 0; i < MAX; i++) { + newtonsolves++; + if(solve(m_x.data()) > 0) { + writelog("\nConverged in {} newton solves, {} timesteps.", newtonsolves, timesteps); + return 1; + } copy(m_xsave.begin(), m_xsave.end(), m_x.begin()); for(int j = 0; j < MAX; j++) { + if (solve(m_x.data(), 1.0e-5) < 0) { + writelog("\nTimestep failure after {} newton solves, {} timesteps.", newtonsolves, timesteps); + return -1; + } timesteps++; - timestep(); } copy(m_x.begin(), m_x.end(), m_xsave.begin()); - newtonsolves++; - m_rdt = 0; - if(solve() == 1) { - writelog("\nConverged in {} newton solves, {} timesteps.", newtonsolves, timesteps); - return 1; - } } - writelog("Solver failure..."); + writelog("Failure to converge in {} steps.", MAX); return 0; } -int Newton::timestep() { - m_rdt = 1.0/(1.0e-5); +//! input initial state using parameter `x` +// for time integration, input parameter `dt` != 0 +// call without `dt`for direct nonlinear solution +// solution state available in *x* on return +int Newton::solve(double* x, double dt) +{ + copy(&x[0], &x[m_nv], m_x.begin()); - // calculate time-integration Jacobian - // m_residfunc->getState(m_x.data()); - copy(m_x.begin(), m_x.end(), m_xlast.begin()); - evalJacobian(&m_x[0], &m_stp[0]); - for (size_t i = 0; i < m_nv; i++) { - m_jacobian.value(i,i) -= m_rdt; + if (dt) { + copy(m_x.begin(), m_x.end(), m_xlast.begin()); + m_rdt = 1/dt; + m_jacAge = npos; + } else { + m_rdt = 0; } - return solve(); -} - -int Newton::solve(int loglevel) -{ - m_residfunc->getState(m_x.data()); while (true) { + // Check whether the Jacobian should be re-evaluated. if (m_jacAge > m_jacMaxAge) { evalJacobian(&m_x[0], &m_stp[0]); + m_jacAge = 0; } - // compute the undamped Newton step - step(&m_x[0], &m_stp[0], loglevel-1); - m_jacAge++; - - // compute the weighted norm of the undamped step size step0 + //compute the undamped Newton step and save its weighted norm + step(&m_x[0], &m_stp[0]); double step_rms = weightedNorm(&m_x[0], &m_stp[0]); + m_jacAge++; // compute the multiplier to keep all components in bounds. double bound_factor = 1.0; @@ -216,6 +207,7 @@ int Newton::solve(int loglevel) // step0 points out of the allowed domain. In this case, the Newton // algorithm fails, so return an error condition. if (bound_factor < 1.e-10) { + return -1; throw CanteraError("Newton::dampStep", "solution at limits"); } @@ -227,14 +219,13 @@ int Newton::solve(int loglevel) for (size_t j = 0; j < m_nv; j++) { m_x1[j] = damp*m_stp[j] + m_x[j]; } - // compute the next undamped step that would result if x1 is accepted - step(&m_x1[0], &m_stp1[0], loglevel-1); - - // compute the weighted norm of step1 + // compute the next undamped step that would result if x1 is accepted, and save its weighted norm + step(&m_x1[0], &m_stp1[0]); double nextstep_rms = weightedNorm(&m_x1[0], &m_stp1[0]); // converged solution criteria if (nextstep_rms < m_converge_tol) { + copy(m_x1.begin(), m_x1.end(), &x[0]); return 1; } // Also accept it if this step would result in a @@ -254,7 +245,7 @@ int Newton::solve(int loglevel) if (m_jacAge > 1) { m_jacAge = npos; } else { - return m; + return -1; } } }