\mainpage Main Page
RTC Click is an accessory board in mikroBus™ form factor. It features the PCF8583 serial real-time clock (RTC).
- Author : MikroE Team
- Date : jan 2020.
- Type : I2C type
We provide a library for the Rtc Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Rtc Click driver.
rtc_cfg_setup
Config Object Initialization function.
void rtc_cfg_setup ( rtc_cfg_t *cfg );
rtc_init
Initialization function.
err_t rtc_init ( rtc_t *ctx, rtc_cfg_t *cfg );
rtc_set_time
Function sets time: hours, minutes and seconds data to the target register address of PCF8583 chip on RTC Click.
void rtc_set_time ( rtc_t *ctx );
rtc_get_time
Function gets time: hours, minutes and seconds data from the target register address of PCF8583 chip on RTC Click.
void rtc_get_time ( rtc_t *ctx );
rtc_enable_disable_counting
Function that enables or disables counting on RTC Click.
void rtc_enable_disable_counting ( rtc_t *ctx, uint8_t en_dis );
This application enables setup and measurement of time with RTC click.
The demo application is composed of two sections :
Initialization driver enable's - I2C, set start time, enable counting and start write log.
void application_init ( void )
{
log_cfg_t log_cfg;
rtc_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
rtc_cfg_setup( &cfg );
RTC_MAP_MIKROBUS( cfg, MIKROBUS_1 );
rtc_init( &rtc, &cfg );
log_printf( &logger, "------------------\r\n" );
log_printf( &logger, " RTC Click \r\n" );
log_printf( &logger, "------------------\r\n" );
// Set Time: 23h, 59 min, 50 sec and 10 ms
rtc.time.time_hours = 23;
rtc.time.time_minutes = 59;
rtc.time.time_seconds = 50;
rtc.time.time_hun_sec = 10;
rtc_set_time( &rtc );
Delay_100ms( );
// Start counting
rtc_enable_disable_counting( &rtc, 1 );
Delay_100ms( );
log_info( &logger, " Application Task " );
}
This is an example which demonstrates the use of RTC Click board. RTC Click communicates with register via I2C by write to register and read from register. This example show time when the value of time_seconds is changed. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on usb uart changes for every 1 sec.
void application_task ( void )
{
static uint8_t time_seconds_new = 0xFF;
rtc_get_time( &rtc );
if ( time_seconds_new != rtc.time.time_seconds )
{
log_printf( &logger, " Time : %.2u:%.2u:%.2u\r\n",
( uint16_t ) rtc.time.time_hours,
( uint16_t ) rtc.time.time_minutes,
( uint16_t ) rtc.time.time_seconds );
log_printf( &logger, "------------------\r\n" );
time_seconds_new = rtc.time.time_seconds;
}
Delay_ms( 500 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.Rtc
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.