-
Notifications
You must be signed in to change notification settings - Fork 7
/
CoDet_OVLVIS_SwinB_4x_ft4x.yaml
43 lines (43 loc) · 1.23 KB
/
CoDet_OVLVIS_SwinB_4x_ft4x.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
_BASE_: "Base_OVLVIS_R5021k_4x.yaml"
MODEL:
WITH_CAPTION: True
SYNC_CAPTION_BATCH: True
ROI_BOX_HEAD:
IMAGE_LOSS_WEIGHT: 0.2
ADD_IMAGE_BOX: True
USE_ZEROSHOT_CLS: True
ZEROSHOT_WEIGHT_PATH: 'datasets/metadata/cc3m_clip_a+cname.npy'
DETECTION_WEIGHT_PATH: 'datasets/metadata/lvis_v1_clip_a+cname.npy'
IMAGE_LABEL_LOSS: 'concept_grouping'
ADD_FEATURE_TO_PROP: True
USE_FED_LOSS: True
CAT_FREQ_PATH: 'datasets/lvis/lvis_v1_train_norare_cat_info.json'
BACKBONE:
NAME: build_swintransformer_fpn_backbone
SWIN:
SIZE: B-22k
FPN:
IN_FEATURES: [ "swin1", "swin2", "swin3" ]
WEIGHTS: "models/BoxSup-C2_Lbase_CLIP_SwinB_896b32_4x.pth"
SOLVER:
MAX_ITER: 180000
IMS_PER_BATCH: 32
BASE_LR: 0.0001
WARMUP_ITERS: 1000
WARMUP_FACTOR: 0.001
DATASETS:
TRAIN: ("lvis_v1_train_norare","cc3m_v1_train_tags")
DATALOADER:
SAMPLER_TRAIN: "MultiDatasetConceptSampler"
DATASET_RATIO: [1, 4]
USE_DIFF_BS_SIZE: True
DATASET_BS: [4, 16]
DATASET_INPUT_SIZE: [896, 448]
USE_RFS: [True, False]
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
FILTER_EMPTY_ANNOTATIONS: False
MULTI_DATASET_GROUPING: True
DATASET_ANN: ['box', 'captiontag']
NUM_WORKERS: 8
CONCEPT_GROUP_SIZE: 8
WITH_IMAGE_LABELS: True