-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
690 lines (581 loc) · 37.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import os
import warnings
import logging
from pathlib import Path
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.scheduler.cosine_lr import CosineLRScheduler
from timm.scheduler.step_lr import StepLRScheduler
from timm.scheduler.plateau_lr import PlateauLRScheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, get_state_dict, ModelEma
#from datasets import build_dataset
from sifar_pytorch.engine import train_one_epoch, evaluate
from sifar_pytorch.samplers import RASampler
from sifar_pytorch import models
from sifar_pytorch import my_models
import torch.nn as nn
#import simclr
from sifar_pytorch import utils
from sifar_pytorch.losses import DeepMutualLoss, ONELoss, MulMixturelLoss, SelfDistillationLoss
from sifar_pytorch.video_dataset import VideoDataSet, VideoDataSetLMDB, VideoDataSetOnline
from sifar_pytorch.video_dataset_aug import get_augmentor, build_dataflow
from sifar_pytorch.video_dataset_config import get_dataset_config, DATASET_CONFIG
from torch.optim.lr_scheduler import StepLR, CosineAnnealingLR
warnings.filterwarnings("ignore", category=UserWarning)
#torch.multiprocessing.set_start_method('spawn', force=True)
_logger = logging.getLogger(__name__)
from ssl_sifar_utils import *
import signal
import traceback
def lineno(signalnum, frame):
print(" ===========================================================================================================")
traceback.print_stack(frame)
print(" ===========================================================================================================")
signal.signal(signal.SIGTSTP, lineno)
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=150, type=int)
# Dataset parameters
parser.add_argument('--data_dir', type=str, metavar='DIR', help='path to dataset')
parser.add_argument('--dataset', default='st2stv2',
choices=list(DATASET_CONFIG.keys()), help='path to dataset file list')
parser.add_argument('--duration', default=8, type=int, help='number of frames')
parser.add_argument('--frames_per_group', default=1, type=int,
help='[uniform sampling] number of frames per group; '
'[dense sampling]: sampling frequency')
parser.add_argument('--threed_data', action='store_true',
help='load data in the layout for 3D conv')
parser.add_argument('--input_size', default=224, type=int, metavar='N', help='input image size')
parser.add_argument('--disable_scaleup', action='store_true',
help='do not scale up and then crop a small region, directly crop the input_size')
parser.add_argument('--random_sampling', action='store_true',
help='perform determinstic sampling for data loader')
parser.add_argument('--dense_sampling', action='store_true',
help='perform dense sampling for data loader')
parser.add_argument('--augmentor_ver', default='v1', type=str, choices=['v1', 'v2'],
help='[v1] TSN data argmentation, [v2] resize the shorter side to `scale_range`')
parser.add_argument('--scale_range', default=[256, 320], type=int, nargs="+",
metavar='scale_range', help='scale range for augmentor v2')
parser.add_argument('--modality', default='rgb', type=str, help='rgb or flow',
choices=['rgb', 'flow'])
parser.add_argument('--use_lmdb', action='store_true', help='use lmdb instead of jpeg.')
parser.add_argument('--use_pyav', action='store_true', help='use video directly.')
# temporal module
parser.add_argument('--pretrained', action='store_true', default=False,
help='Start with pretrained version of specified network (if avail)')
parser.add_argument('--temporal_module_name', default=None, type=str, metavar='TEM', choices=['ResNet3d', 'TAM', 'TTAM', 'TSM', 'TTSM', 'MSA'],
help='temporal module applied. [TAM]')
parser.add_argument('--temporal_attention_only', action='store_true', default=False,
help='use attention only in temporal module]')
parser.add_argument('--no_token_mask', action='store_true', default=False, help='do not apply token mask')
parser.add_argument('--temporal_heads_scale', default=1.0, type=float, help='scale of the number of spatial heads')
parser.add_argument('--temporal_mlp_scale', default=1.0, type=float, help='scale of spatial mlp')
parser.add_argument('--rel_pos', action='store_true', default=False,
help='use relative positioning in temporal module]')
parser.add_argument('--temporal_pooling', type=str, default=None, choices=['avg', 'max', 'conv', 'depthconv'],
help='perform temporal pooling]')
parser.add_argument('--bottleneck', default=None, choices=['regular', 'dw'],
help='use depth-wise bottleneck in temporal attention')
parser.add_argument('--window_size', default=7, type=int, help='number of frames')
parser.add_argument('--super_img_rows', default=1, type=int, help='number of frames per row')
parser.add_argument('--hpe_to_token', default=False, action='store_true',
help='add hub position embedding to image tokens')
# Model parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
# parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.0, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=0, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=False)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.0, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.0,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=0.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Dataset parameters
# parser.add_argument('--data-path', default=os.path.join(os.path.expanduser("~"), 'datasets/image_cls/imagenet1k/'), type=str,
# help='dataset path')
# parser.add_argument('--data-set', default='IMNET', choices=['CIFAR10', 'CIFAR100', 'IMNET', 'INAT', 'INAT19', 'IMNET21K', 'Flowers102', 'StanfordCars', 'iNaturalist2019', 'Caltech101'],
# type=str, help='Image Net dataset path')
# parser.add_argument('--inat-category', default='name',
# choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
# type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--no-resume-loss-scaler', action='store_false', dest='resume_loss_scaler')
parser.add_argument('--no-amp', action='store_false', dest='amp', help='disable amp')
parser.add_argument('--use_checkpoint', default=False, action='store_true', help='use checkpoint to save memory')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--num_workers', default=20, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# for testing and validation
parser.add_argument('--num_crops', default=1, type=int, choices=[1, 3, 5, 10])
parser.add_argument('--num_clips', default=1, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument("--local-rank", type=int)
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--auto-resume', action='store_true', help='auto resume')
# exp
parser.add_argument('--simclr_w', type=float, default=0., help='weights for simclr loss')
parser.add_argument('--contrastive_nomixup', action='store_true', help='do not involve mixup in contrastive learning')
parser.add_argument('--temperature', type=float, default=0.07, help='temperature of NCE')
parser.add_argument('--branch_div_w', type=float, default=0., help='add branch divergence in the loss')
parser.add_argument('--simsiam_w', type=float, default=0., help='weights for simsiam loss')
parser.add_argument('--moco_w', type=float, default=0., help='weights for moco loss')
parser.add_argument('--byol_w', type=float, default=0., help='weights for byol loss')
parser.add_argument('--finetune', action='store_true', help='finetune model')
parser.add_argument('--initial_checkpoint', type=str, default='', help='path to the pretrained model')
parser.add_argument('--dml_w', type=float, default=0., help='enable deep mutual learning')
parser.add_argument('--one_w', type=float, default=0., help='enable ONE')
parser.add_argument('--kd_temp', type=float, default=1.0, help='temperature for kd loss')
parser.add_argument('--mulmix_b', type=float, default=0., help='mulmix beta')
parser.add_argument('--hard_contrastive', action='store_true', help='use HEXA')
parser.add_argument('--selfdis_w', type=float, default=0., help='enable self distillation')
# New parameter added for spliting of training list
parser.add_argument('--percentage', type=float, default=0.95, help='Percent of Unlabeled training list')
parser.add_argument('--strategy', type=str, default='classwise', help='spliting strategy, classwise or overall')
parser.add_argument('--mu', type=int, default=1, help='batch size factor for unlabeled')
parser.add_argument('--gamma', type=float, default=1.0, help='instace constractive loss factor')
parser.add_argument('--beta', type=float, default=1.0, help='group constractive loss factor')
#used in simclr
parser.add_argument('--sup_thresh', type=int, default=25, help='Supervise threshold')
parser.add_argument('--list_root', type=str, default="/home/prithwish/aftab/workspace/ssl-sifar-dgx/dataset_list", help='Path of the train val list')
parser.add_argument('--lr_factor', type=float, default=0.1, help='factor multiply with the original lr after sup_thres')
parser.add_argument('--auto_resume', action='store_true', default=False,
help='automatically resume from the output dir checkpoint')
parser.add_argument('--pretrained-path', type=str, default='', help='path to the pretrained ckpt imagenet')
parser.add_argument('--no_flip', action='store_true', default=False,
help='Disable RandomHorizontalFlip in augmentaion')
parser.add_argument('--fast-backprop', action='store_true', default=False,
help='use fast back prop')
parser.add_argument('--remark', type=str, default="--")
parser.add_argument('--lr-cycle', type=float, default=1.0, help='LR sched cycle')
parser.add_argument('--lr-min', type=float, default=0.0, help='min LR in sched')
parser.add_argument('--model-type', type=str, default='swin', help='Swin')
parser.add_argument('--drop-last', action='store_true', default=False, help='Drop last batch')
parser.add_argument('--frame-order', type=str, default='normal', help='Frame order in super image')
parser.add_argument('--no-group-loss', action='store_true', default=False, help='Drop last batch')
parser.add_argument('--decay-t', type=int, default=50, help='decay epoch in step lr')
parser.add_argument('--use-pl-loss', action='store_true', default=False, help='Drop last batch')
parser.add_argument('--threshold', type=float, default=0.8, help='pl loss threshold')
parser.add_argument('--test-batch-size', type=int, default=15, help='test batch size')
parser.add_argument('--classwise-eval', action='store_true', default=False, help='Do a classwise evaluation')
return parser
def main(args):
args.distributed = False
# utils.init_distributed_mode(args)
args_dict = vars(args)
torch.save(args_dict, os.path.join(args.output_dir, 'args'))
argstr = '\n'.join([f"{k:<30}:\t{v}" for k, v in args_dict.items()])
_logger.info(argstr)
if not hasattr(args, 'hard_contrastive'):
args.hard_contrastive = False
if not hasattr(args, 'selfdis_w'):
args.selfdis_w = 0.0
#is_imnet21k = args.data_set == 'IMNET21K'
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
num_classes, train_list_name, val_list_name, filename_seperator, image_tmpl, filter_video, train_label_list_name, train_unlabel_list_name = get_dataset_config(
args.dataset, args.use_lmdb)
args.num_classes = num_classes
if args.modality == 'rgb':
args.input_channels = 3
elif args.modality == 'flow':
args.input_channels = 2 * 5
# mean = IMAGENET_DEFAULT_MEAN
# std = IMAGENET_DEFAULT_STD
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.num_classes)
print(f"Creating model: {args.model}")
model = create_model(
args.model,
img_size=args.input_size,
pretrained=args.pretrained,
duration=args.duration,
hpe_to_token = args.hpe_to_token,
rel_pos = args.rel_pos,
window_size=args.window_size,
super_img_rows = args.super_img_rows,
token_mask=not args.no_token_mask,
online_learning = args.one_w >0.0 or args.dml_w >0.0,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=args.drop_block,
use_checkpoint=args.use_checkpoint,
## added by aftab, for loading pretrained imagenet from ckpt
pretrained_model=args.pretrained_path,
fast_backprop=args.fast_backprop,
enable_amp=args.amp,
model_type=args.model_type
)
# TODO: finetuning
# print("Flops: ", model.flops())
model= nn.DataParallel(model)
model.to(device)
model_ema = None
print(model)
# import ipdb; ipdb.set_trace()
# exit(0)
################################################################
## To freeze some blocks of the model.
# for name, param in model.named_parameters():
# if "layers.2.blocks.0." in name or "layers.0." in name or "layers.1." in name or "layers.2.blocks.1." in name or "layers.2.blocks.2." in name or "layers.2.blocks.3." in name or "layers.2.blocks.4." in name or "layers.2.blocks.5." in name or "layers.2.blocks.7." in name or "layers.2.blocks.8." in name or "layers.2.blocks.9." in name:
# param.requires_grad = False
#
# train_param=0
# tot_param=0
#
# for name, param in model.named_parameters():
# if param.requires_grad == True:
# if len(param.size()) < 2:
# #print(name," ",param.size()[0])
# train_param = tpython3 main.py --data_dir '/nobackup/users/rpanda/datasets/Kinetics400_sifar/compress/' --list_root '/nobackup/users/rpanda/owais/ssl-sifar/dataset_list/k400_1per_SVformer' --use_pyav --dataset 'kinetics400' --opt adamw --lr 8e-6 --epochs 50 --sched cosine --duration 8 --batch-size 3 --super_img_rows 3 --disable_scaleup --mixup 0.8 --cutmix 1.0 --drop-path 0.1 --model sifar_large_patch4_window12_192_3x3 --output_dir '/nobackup/users/rpanda/owais/SITAR/output/sitar_large/kinetics_1per/lr_8e-6_with_smooth_ssl' --hpe_to_token --sup_thresh 0 --num_workers 16 --mu 4 --input_size 192 --temperature 0.5 --gamma 0.6 --beta 1 --model-type 'swin' --test-batch-size 30 --smoothing 0.3 --resume '/nobackup/users/rpanda/owais/SITAR/output/sitar_large/kinetics_1per/lr_8e-6_with_smooth_ssl/checkpoint.pth'rain_param+param.size()[0]
# a=1
# elif len(param.size()) < 3:
# #print(name," ",param.size()[0]*param.size()[1])
# train_param = train_param+(param.size()[0]*param.size()[1])
# a=1
# else:
# #print(name," ",param.size()[0]*param.size()[1]*param.size()[2])
# train_param = train_param+(param.size()[0]*param.size()[1]*param.size()[2])
# a=1
#
# print("train_param:",train_param)
# exit(0)
##################################################################
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
# model_without_ddp = model
# if args.distributed:
# print("Using distributed training...")
# #model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
# # model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
# model = torch.nn.DataParallel(model, device_ids=[args.gpu]).cuda()
# #model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
#linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
#args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model)
loss_scaler = NativeScalerWithGradNormCount()
#print(f"Scaled learning rate (batch size: {args.batch_size * utils.get_world_size()}): {linear_scaled_lr}")
# lr_sched_cosine = CosineLRScheduler(optimizer, t_initial=args.epochs, warmup_t= 0.1 * args.epochs, warmup_lr_init=1e-6)
#lr_sched_cosine = CosineLRScheduler(optimizer, t_initial=args.epochs/3, lr_min=1e-10, cycle_limit=3)
lr_sched_cosine = CosineLRScheduler(optimizer,
t_initial=args.epochs/args.lr_cycle,
lr_min=args.lr_min,
cycle_limit=args.lr_cycle,
warmup_t=args.warmup_epochs,
warmup_lr_init=args.warmup_lr
)
# lr_sched_cosine = StepLRScheduler(optimizer, decay_t = args.decay_t, decay_rate=args.decay_rate)
# lr_sched_cosine = PlateauLRScheduler(optimizer, decay_rate=0.1, threshold=0.1)
# lr_sched_cosine = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10,15,20], gamma=0.1) ##added by owais
criterion = LabelSmoothingCrossEntropy()
if args.mixup > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
if args.dml_w > 0.:
criterion = DeepMutualLoss(criterion, args.dml_w, args.kd_temp)
elif args.one_w > 0.:
criterion = ONELoss(criterion, args.one_w, args.kd_temp)
elif args.mulmix_b > 0.:
criterion = MulMixturelLoss(criterion, args.mulmix_b)
elif args.selfdis_w > 0.:
criterion = SelfDistillationLoss(criterion, args.selfdis_w, args.kd_temp)
# all are None as of now
simclr_criterion = simclr.NTXent(temperature=args.temperature) if args.simclr_w > 0. else None
branch_div_criterion = torch.nn.CosineSimilarity() if args.branch_div_w > 0. else None
simsiam_criterion = simclr.SimSiamLoss() if args.simsiam_w > 0. else None
moco_criterion = torch.nn.CrossEntropyLoss() if args.moco_w > 0. else None
byol_criterion = simclr.BYOLLoss() if args.byol_w > 0. else None
max_accuracy = 0.0
output_dir = Path(args.output_dir)
if args.initial_checkpoint:
print("Loading pretrained model")
checkpoint = torch.load(args.initial_checkpoint, map_location='cpu')
utils.load_checkpoint(model, checkpoint['model'])
if args.auto_resume:
if args.resume == '':
args.resume = str(output_dir / "checkpoint.pth")
if not os.path.exists(args.resume):
args.resume = ''
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
utils.load_checkpoint(model, checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_sched_cosine.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint and args.resume_loss_scaler:
print("Resume with previous loss scaler state")
loss_scaler.load_state_dict(checkpoint['scaler'])
if args.model_ema:
utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
max_accuracy = checkpoint['max_accuracy']
# edited by aftab, mean, std will be used that init in get_aug method
mean = None #(0.5, 0.5, 0.5)
std = None #(0.5, 0.5, 0.5)
# if args.distributed:
# mean = (0.5, 0.5, 0.5) if 'mean' not in model.module.default_cfg else model.module.default_cfg['mean']
# std = (0.5, 0.5, 0.5) if 'std' not in model.module.default_cfg else model.module.default_cfg['std']
# else:
# mean = (0.5, 0.5, 0.5) if 'mean' not in model.default_cfg else model.default_cfg['mean']
# std = (0.5, 0.5, 0.5) if 'std' not in model.default_cfg else model.default_cfg['std']
# dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
# create data loaders w/ augmentation pipeiine
if args.use_lmdb:
video_data_cls = VideoDataSetLMDB
elif args.use_pyav:
video_data_cls = VideoDataSetOnline
else:
video_data_cls = VideoDataSet
## Datasets and Dataloaders
train_label_list = os.path.join(args.list_root, train_label_list_name)
train_unlabel_list = os.path.join(args.list_root, train_unlabel_list_name)
train_augmentor = get_augmentor(True, args.input_size, mean, std, threed_data=args.threed_data,
version=args.augmentor_ver, scale_range=args.scale_range, dataset=args.dataset, no_flip=args.no_flip)
dataset_labeled_train = video_data_cls(args.data_dir, train_label_list, args.duration, args.frames_per_group,
num_clips=args.num_clips,
modality=args.modality, image_tmpl=image_tmpl,
dense_sampling=args.dense_sampling,
transform=train_augmentor, is_train=True, test_mode=False,
seperator=filename_seperator, filter_video=filter_video,
frame_order=args.frame_order)
dataset_unlabeled_train = video_data_cls(args.data_dir, train_unlabel_list, args.duration, args.frames_per_group,
num_clips=args.num_clips,
modality=args.modality, image_tmpl=image_tmpl,
dense_sampling=args.dense_sampling,
transform=train_augmentor, is_train=True, test_mode=False,
seperator=filename_seperator, filter_video=filter_video,
frame_order=args.frame_order)
num_tasks = utils.get_world_size()
labeled_trainloader = build_dataflow(dataset_labeled_train, is_train=True, batch_size=args.batch_size,
workers=args.num_workers, is_distributed=args.distributed, drop_last=args.drop_last)
unlabeled_trainloader = build_dataflow(dataset_unlabeled_train, is_train=True, batch_size=(args.batch_size * args.mu),
workers=args.num_workers, is_distributed=args.distributed, drop_last=args.drop_last)
val_list = os.path.join(args.list_root, val_list_name)
val_augmentor = get_augmentor(False, args.input_size, mean, std, args.disable_scaleup,
threed_data=args.threed_data, version=args.augmentor_ver,
scale_range=args.scale_range, num_clips=args.num_clips, num_crops=args.num_crops, dataset=args.dataset, no_flip=args.no_flip)
dataset_val = video_data_cls(args.data_dir, val_list, args.duration, args.frames_per_group,
num_clips=args.num_clips,
modality=args.modality, image_tmpl=image_tmpl,
dense_sampling=args.dense_sampling,
transform=val_augmentor, is_train=False, test_mode=False,
seperator=filename_seperator, filter_video=filter_video, frame_order=args.frame_order,
)
data_loader_val = build_dataflow(dataset_val, is_train=False, batch_size=args.test_batch_size,
workers=args.num_workers, is_distributed=args.distributed, drop_last=args.drop_last)
#saving the sample superimage from data loader
# sample_si_root = "/home/mt0/22CS60R54/ssl-sifar/superimages/"
# save_super_image_from_dataloader(data_loader_labeled_train, sample_si_root, "labeled.jpg", True, args.input_size, args.super_img_rows)
# save_super_image_from_dataloader(data_loader_unlabeled_train, sample_si_root, "unlabeled.jpg", False, args.input_size, args.super_img_rows)
if args.classwise_eval:
test_stats = evaluate(data_loader_val, model, device, num_tasks, distributed=args.distributed, amp=args.amp, num_crops=args.num_crops, num_clips=args.num_clips, args=args, classwise=True)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
if args.eval:
test_stats = evaluate(data_loader_val, model, device, num_tasks, distributed=args.distributed, amp=args.amp, num_crops=args.num_crops, num_clips=args.num_clips, args=args)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
# test_stats = evaluate(data_loader_val, model, device, num_tasks, distributed=args.distributed, amp=args.amp, num_crops=args.num_crops, num_clips=args.num_clips, args=args)
# print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
print(f"Start training, currnet max acc is {max_accuracy:.2f}")
start_time = time.time()
eval_count = 0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
labeled_trainloader.sampler.set_epoch(epoch)
unlabeled_trainloader.sampler.set_epoch(epoch)
start_time = time.time()
train_stats = train_one_epoch(
model, criterion, labeled_trainloader, unlabeled_trainloader,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn, num_tasks, True,
args = args,
amp=args.amp,
simclr_criterion=simclr_criterion, simclr_w=args.simclr_w,
branch_div_criterion=branch_div_criterion, branch_div_w=args.branch_div_w,
simsiam_criterion=simsiam_criterion, simsiam_w=args.simsiam_w,
moco_criterion=moco_criterion, moco_w=args.moco_w,
byol_criterion=byol_criterion, byol_w=args.byol_w,
contrastive_nomixup=args.contrastive_nomixup,
hard_contrastive=args.hard_contrastive,
finetune=args.finetune
)
end_time = time.time()
_logger.info(f"Epoch: {epoch}, Time: {(end_time - start_time) / 60}, Fastbackprop: {args.fast_backprop}")
lr_sched_cosine.step(epoch)
test_stats = evaluate(data_loader_val, model, device, num_tasks, distributed=args.distributed, amp=args.amp, args=args)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
# added for LR on Platetue
# lr_sched_cosine.step(test_stats['loss'], epoch)
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
if test_stats["acc1"] == max_accuracy:
checkpoint_paths.append(output_dir / 'model_best.pth')
for checkpoint_path in checkpoint_paths:
state_dict = {
'model': model.state_dict(), #model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_sched_cosine.state_dict(),
'epoch': epoch,
'args': args,
'scaler': loss_scaler.state_dict(),
'max_accuracy': max_accuracy
}
if args.model_ema:
state_dict['model_ema'] = get_state_dict(model_ema)
utils.save_on_master(state_dict, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
logging.basicConfig(level=logging.INFO,
filename=os.path.join(args.output_dir, 'logs.log'),
filemode="w",
format="%(name)s %(asctime)s %(levelname)s \n%(message)s"
)
main(args)