-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_2D.py
132 lines (118 loc) · 4.79 KB
/
test_2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import os
import shutil
import h5py
import numpy as np
import SimpleITK as sitk
import torch
from medpy import metric
from scipy.ndimage import zoom
from scipy.ndimage.interpolation import zoom
from tqdm import tqdm
from dataloaders.dataset import MRSEG19Normalization
from networks.net_factory import net_factory
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='./datasets/ACDC', help='Name of Experiment')
parser.add_argument('--model', type=str,
default='unet', help='model_name')
parser.add_argument('--num_classes', type=int, default=4,
help='output channel of network')
parser.add_argument('--labeled_num', type=int, default=3,
help='labeled data')
parser.add_argument('--ckpt' , type=str, default='./logs/ACDC/diffrect_7_labeled/unet/unet_best_model.pth',
help='checkpoint_name', required=True)
def calculate_metric_percase(pred, gt):
pred[pred > 0] = 1
gt[gt > 0] = 1
if pred.sum() > 0 and gt.sum() > 0:
dice = metric.binary.dc(pred, gt)
hd95 = metric.binary.hd95(pred, gt)
asd = metric.binary.asd(pred, gt)
jc = metric.binary.jc(pred, gt)
return dice, jc, hd95, asd
else:
return 0, 0, 50, 10.
def test_single_volume(case, net, FLAGS):
h5f = h5py.File(FLAGS.root_path + "/data/{}.h5".format(case), 'r')
image = h5f['image'][:]
# normalize if max value is greater than 1
if image.max() > 1:
image = MRSEG19Normalization()(image, mode='Max_Min')
label = h5f['label'][:]
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
slice = zoom(slice, (256 / x, 256 / y), order=0)
input = torch.from_numpy(slice).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
out_main = net(input)
if len(out_main) > 1:
out_main = out_main[0]
out = torch.argmax(torch.softmax(
out_main, dim=1), dim=1).squeeze(0)
out = out.cpu().detach().numpy()
pred = zoom(out, (x / 256, y / 256), order=0)
prediction[ind] = pred
first_metric = calculate_metric_percase(prediction == 1, label == 1)
second_metric = calculate_metric_percase(prediction == 2, label == 2)
third_metric = calculate_metric_percase(prediction == 3, label == 3)
img_itk = sitk.GetImageFromArray(image.astype(np.float32))
img_itk.SetSpacing((1, 1, 10))
prd_itk = sitk.GetImageFromArray(prediction.astype(np.float32))
prd_itk.SetSpacing((1, 1, 10))
lab_itk = sitk.GetImageFromArray(label.astype(np.float32))
lab_itk.SetSpacing((1, 1, 10))
return first_metric, second_metric, third_metric
def Inference(FLAGS, list=None):
with open(FLAGS.root_path + '/'+list+'.list', 'r') as f:
image_list = f.readlines()
image_list = sorted([item.replace('\n', '').split(".")[0]
for item in image_list])
test_save_path = FLAGS.ckpt.split('/unet/')[0] + '/predictions/'
if os.path.exists(test_save_path):
shutil.rmtree(test_save_path)
os.makedirs(test_save_path)
net = net_factory(net_type=FLAGS.model, in_chns=1,
class_num=FLAGS.num_classes)
# print(torch.load(FLAGS.ckpt).keys())
if 'state_dict' in torch.load(FLAGS.ckpt).keys():
info = net.load_state_dict(torch.load(FLAGS.ckpt)['state_dict'])
else:
info = net.load_state_dict(torch.load(FLAGS.ckpt))
print("init weight from {}".format(FLAGS.ckpt))
print(info)
net.eval()
first_total = 0.0
second_total = 0.0
third_total = 0.0
for case in tqdm(image_list):
first_metric, second_metric, third_metric = test_single_volume(
case, net, FLAGS)
first_total += np.asarray(first_metric)
second_total += np.asarray(second_metric)
third_total += np.asarray(third_metric)
avg_metric = [first_total / len(image_list), second_total /
len(image_list), third_total / len(image_list)]
return avg_metric
if __name__ == '__main__':
FLAGS = parser.parse_args()
if 'ACDC' in FLAGS.root_path:
list_list = ['val', 'test']
else:
list_list = ['val']
for list in list_list:
result_metric = Inference(FLAGS, list)
print("Results per class")
print(result_metric)
print(" | Dice | HD95 | Jaccard | ASD |")
# average over result_metric[0] ... result_metric[FLAGS.num_classes - 2]
print("Average")
res = np.zeros_like(result_metric[0])
for i in range(FLAGS.num_classes - 1):
res += result_metric[i]
res /= (FLAGS.num_classes - 1)
print(res)