-
Notifications
You must be signed in to change notification settings - Fork 1
/
CiteSeer.js
189 lines (178 loc) · 6.38 KB
/
CiteSeer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
{
"translatorID": "fa396dd4-7d04-4f99-95e1-93d6f355441d",
"label": "CiteSeer",
"creator": "Sebastian Karcher",
"target": "^https?://citeseerx?\\.ist\\.psu\\.edu",
"minVersion": "3.0",
"maxVersion": "",
"priority": 100,
"inRepository": true,
"translatorType": 4,
"browserSupport": "gcsibv",
"lastUpdated": "2016-09-13 06:39:17"
}
/*
***** BEGIN LICENSE BLOCK *****
Copyright © 2012 Sebastian Karcher
This file is part of Zotero.
Zotero is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Zotero is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with Zotero. If not, see <http://www.gnu.org/licenses/>.
***** END LICENSE BLOCK *****
*/
function detectWeb(doc, url) {
//for running the tests with book examples:
//return "book";
if ((url.indexOf('/search') != -1 || url.indexOf('/showciting') != -1) && getSearchResults(doc).length) {
return "multiple";
}
if (url.indexOf('/viewdoc/') != -1 && doc.getElementById('bibtex')) {
return "journalArticle";
}
}
function getSearchResults(doc) {
return ZU.xpath(doc, '//div[@class="result"]/h3/a');
}
function doWeb(doc, url) {
var articles = new Array();
if (detectWeb(doc, url) == "multiple") {
var items = {};
var titles = getSearchResults(doc);
for (var i=0; i<titles.length; i++) {
items[titles[i].href] = titles[i].textContent.trim();
}
Zotero.selectItems(items, function (items) {
if (!items) {
return true;
}
for (var i in items) {
articles.push(i);
}
ZU.processDocuments(articles, scrape);
});
} else {
scrape(doc, url);
}
}
function scrape(doc, url) {
//get abstract and pdf from article plage
var abs = ZU.xpathText(doc, '//meta[@name="description"]/@content');
var pdfurl = "http://citeseerx.ist.psu.edu" + ZU.xpathText(doc, '//div[@id="downloads"]//a[contains(@title, "document as PDF")]/@href');
var bibtex = ZU.trimInternal(ZU.xpathText(doc, '//div[@id="bibtex"]/p').replace(/computingdiscrete/g, ""));
var translator = Zotero.loadTranslator("import");
translator.setTranslator("9cb70025-a888-4a29-a210-93ec52da40d4");
//Z.debug(bibtex);
translator.setString(bibtex);
translator.setHandler("itemDone", function (obj, item) {
if (abs) item.abstractNote = abs.replace(/.+?:/, "");
if (item.title == item.title.toUpperCase()) {
item.title = ZU.capitalizeTitle(item.title.toLowerCase(), true);
}
if (item.publicationTitle && (item.publicationTitle == item.publicationTitle.toUpperCase())) {
item.publicationTitle = ZU.capitalizeTitle(item.publicationTitle.toLowerCase(), true);
}
item.attachments = [{
document: doc,
title: "Citeseer - Snapshot",
mimeType: "text/html"
}, {
url: pdfurl,
title: "Citeseer - Full Text PDF",
mimeType: "application/pdf"
}];
item.complete();
});
translator.translate();
}
/** BEGIN TEST CASES **/
var testCases = [
{
"type": "web",
"url": "http://citeseerx.ist.psu.edu/search?q=karcher&submit=Search&sort=rlv&t=doc",
"items": "multiple"
},
{
"type": "web",
"url": "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.6708",
"items": [
{
"itemType": "journalArticle",
"title": "Computing Discrete Minimal Surfaces and Their Conjugates",
"creators": [
{
"firstName": "Ulrich",
"lastName": "Pinkall",
"creatorType": "author"
},
{
"firstName": "Konrad",
"lastName": "Polthier",
"creatorType": "author"
}
],
"date": "1993",
"abstractNote": "We present a new algorithm to compute stable discrete minimal surfaces bounded by a number of fixed or free boundary curves in R³, S³ and H³. The algorithm makes no restriction on the genus and can handle singular triangulations. For a discrete harmonic map a conjugation process is presented leading in case of minimal surfaces additionally to instable solutions of the free boundary value problem for minimal surfaces. Symmetry properties of boundary curves are respected during conjugation.",
"itemID": "Pinkall93",
"libraryCatalog": "CiteSeer",
"pages": "15–36",
"publicationTitle": "Experimental Mathematics",
"volume": "2",
"attachments": [
{
"title": "Citeseer - Snapshot",
"mimeType": "text/html"
},
{
"title": "Citeseer - Full Text PDF",
"mimeType": "application/pdf"
}
],
"tags": [],
"notes": [],
"seeAlso": []
}
]
},
{
"type": "web",
"url": "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.332.356&rank=1",
"items": [
{
"itemType": "book",
"title": "The Nature of Statistical Learning Theory",
"creators": [
{
"firstName": "Vladimir N.",
"lastName": "Vapnik",
"creatorType": "author"
}
],
"date": "1999",
"abstractNote": "Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the developed theory were proposed. This made statistical learning theory not only a tool for the theoretical analysis but also a tool for creating practical algorithms for estimating multidimensional functions. This article presents a very general overview of statistical learning theory including both theoretical and algorithmic aspects of the theory. The goal of this overview is to demonstrate how the abstract learning theory established conditions for generalization which are more general than those discussed in classical statistical paradigms and how the understanding of these conditions inspired new algorithmic approaches to function estimation problems. A more",
"itemID": "Vapnik99thenature",
"libraryCatalog": "CiteSeer",
"attachments": [
{
"title": "Citeseer - Snapshot",
"mimeType": "text/html"
},
{
"title": "Citeseer - Full Text PDF",
"mimeType": "application/pdf"
}
],
"tags": [],
"notes": [],
"seeAlso": []
}
]
}
]
/** END TEST CASES **/