forked from lm-sys/FastChat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_webpage_data_from_table.py
119 lines (104 loc) · 3.69 KB
/
generate_webpage_data_from_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""Generate json file for webpage."""
import json
import os
import re
models = ["alpaca", "llama", "gpt35", "bard"]
def read_jsonl(path: str, key: str = None):
data = []
with open(os.path.expanduser(path)) as f:
for line in f:
if not line:
continue
data.append(json.loads(line))
if key is not None:
data.sort(key=lambda x: x[key])
data = {item[key]: item for item in data}
return data
def trim_hanging_lines(s: str, n: int) -> str:
s = s.strip()
for _ in range(n):
s = s.split("\n", 1)[1].strip()
return s
if __name__ == "__main__":
questions = read_jsonl("table/question.jsonl", key="question_id")
alpaca_answers = read_jsonl(
"table/answer/answer_alpaca-13b.jsonl", key="question_id"
)
bard_answers = read_jsonl("table/answer/answer_bard.jsonl", key="question_id")
gpt35_answers = read_jsonl("table/answer/answer_gpt35.jsonl", key="question_id")
llama_answers = read_jsonl("table/answer/answer_llama-13b.jsonl", key="question_id")
vicuna_answers = read_jsonl(
"table/answer/answer_vicuna-13b.jsonl", key="question_id"
)
review_alpaca = read_jsonl(
"table/review/review_alpaca-13b_vicuna-13b.jsonl", key="question_id"
)
review_bard = read_jsonl(
"table/review/review_bard_vicuna-13b.jsonl", key="question_id"
)
review_gpt35 = read_jsonl(
"table/review/review_gpt35_vicuna-13b.jsonl", key="question_id"
)
review_llama = read_jsonl(
"table/review/review_llama-13b_vicuna-13b.jsonl", key="question_id"
)
records = []
for qid in questions.keys():
r = {
"id": qid,
"category": questions[qid]["category"],
"question": questions[qid]["text"],
"answers": {
"alpaca": alpaca_answers[qid]["text"],
"llama": llama_answers[qid]["text"],
"bard": bard_answers[qid]["text"],
"gpt35": gpt35_answers[qid]["text"],
"vicuna": vicuna_answers[qid]["text"],
},
"evaluations": {
"alpaca": review_alpaca[qid]["text"],
"llama": review_llama[qid]["text"],
"bard": review_bard[qid]["text"],
"gpt35": review_gpt35[qid]["text"],
},
"scores": {
"alpaca": review_alpaca[qid]["score"],
"llama": review_llama[qid]["score"],
"bard": review_bard[qid]["score"],
"gpt35": review_gpt35[qid]["score"],
},
}
# cleanup data
cleaned_evals = {}
for k, v in r["evaluations"].items():
v = v.strip()
lines = v.split("\n")
# trim the first line if it's a pair of numbers
if re.match(r"\d+[, ]+\d+", lines[0]):
lines = lines[1:]
v = "\n".join(lines)
cleaned_evals[k] = v.replace("Assistant 1", "**Assistant 1**").replace(
"Assistant 2", "**Assistant 2**"
)
r["evaluations"] = cleaned_evals
records.append(r)
# Reorder the records, this is optional
for r in records:
if r["id"] <= 20:
r["id"] += 60
else:
r["id"] -= 20
for r in records:
if r["id"] <= 50:
r["id"] += 10
elif 50 < r["id"] <= 60:
r["id"] -= 50
for r in records:
if r["id"] == 7:
r["id"] = 1
elif r["id"] < 7:
r["id"] += 1
records.sort(key=lambda x: x["id"])
# Write to file
with open("webpage/data.json", "w") as f:
json.dump({"questions": records, "models": models}, f, indent=2)