From 961c34a8cd57fc6392a77d2ea92c031f1588b26b Mon Sep 17 00:00:00 2001 From: marcel rosier <32431395+MarcelRosier@users.noreply.github.com> Date: Mon, 25 Nov 2024 12:34:37 +0100 Subject: [PATCH] Update README.md --- README.md | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index 8997eaf..36f01f7 100644 --- a/README.md +++ b/README.md @@ -30,19 +30,19 @@ pip install deep_quality_estimation A minimal example to predict the quality of a segmentation could look like this: ```python - from deep_quality_estimation import DQE - - # shown parameters are default values but can be adapted to usecase - dqe = DQE(device="cuda", cuda_devices="0") - - # inputs can be Paths (str or pathlib.Path object), NumPy NDArrays or a mix - mean_score, scores_per_view = dqe.predict( - t1c="t1c.nii.gz", - t1="t1.nii.gz", - t2="t2.nii.gz", - flair="flair.nii.gz", - segmentation="segmentation.nii.gz", - ) +from deep_quality_estimation import DQE + +# shown parameters are default values but can be adapted to usecase +dqe = DQE(device="cuda", cuda_devices="0") + +# inputs can be Paths (str or pathlib.Path object), NumPy NDArrays or a mix +mean_score, scores_per_view = dqe.predict( + t1c="t1c.nii.gz", + t1="t1.nii.gz", + t2="t2.nii.gz", + flair="flair.nii.gz", + segmentation="segmentation.nii.gz", +) ```