forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
astar.cc
177 lines (159 loc) · 5.54 KB
/
astar.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <vector>
#include <absl/container/flat_hash_map.h>
#include <absl/container/flat_hash_set.h>
#include "ortools/base/adjustable_priority_queue.h"
#include "ortools/base/integral_types.h"
namespace operations_research {
namespace {
// Priority queue element
class Element {
public:
Element()
: heap_index_(-1), distance_(0), node_(-1), distance_with_heuristic_(0) {}
// The distance_with_heuristic is used for the comparison
// in the priority queue
bool operator<(const Element& other) const {
return distance_with_heuristic_ > other.distance_with_heuristic_;
}
void SetHeapIndex(int h) { heap_index_ = h; }
int GetHeapIndex() const { return heap_index_; }
void set_distance(int64 distance) { distance_ = distance; }
void set_distance_with_heuristic(int64 distance_with_heuristic) {
distance_with_heuristic_ = distance_with_heuristic;
}
int64 distance_with_heuristic() { return distance_with_heuristic_; }
int64 distance() const { return distance_; }
void set_node(int node) { node_ = node; }
int node() const { return node_; }
private:
int heap_index_;
int64 distance_;
int64 distance_with_heuristic_;
int node_;
};
} // namespace
class AStarSP {
public:
static const int64 kInfinity = kint64max / 2;
AStarSP(int node_count, int start_node, std::function<int64(int, int)> graph,
std::function<int64(int)> heuristic, int64 disconnected_distance)
: node_count_(node_count),
start_node_(start_node),
graph_(std::move(graph)),
disconnected_distance_(disconnected_distance),
predecessor_(new int[node_count]),
elements_(node_count),
heuristic_(std::move(heuristic)) {}
bool ShortestPath(int end_node, std::vector<int>* nodes);
private:
void Initialize();
int SelectClosestNode(int64* distance);
void Update(int label);
void FindPath(int dest, std::vector<int>* nodes);
const int node_count_;
const int start_node_;
std::function<int64(int, int)> graph_;
std::function<int64(int)> heuristic_;
const int64 disconnected_distance_;
std::unique_ptr<int[]> predecessor_;
AdjustablePriorityQueue<Element> frontier_;
std::vector<Element> elements_;
absl::flat_hash_set<int> not_visited_;
absl::flat_hash_set<int> added_to_the_frontier_;
};
void AStarSP::Initialize() {
for (int i = 0; i < node_count_; i++) {
elements_[i].set_node(i);
if (i == start_node_) {
predecessor_[i] = -1;
elements_[i].set_distance(0);
elements_[i].set_distance_with_heuristic(heuristic_(i));
frontier_.Add(&elements_[i]);
} else {
elements_[i].set_distance(kInfinity);
elements_[i].set_distance_with_heuristic(kInfinity);
predecessor_[i] = start_node_;
not_visited_.insert(i);
}
}
}
int AStarSP::SelectClosestNode(int64* distance) {
const int node = frontier_.Top()->node();
*distance = frontier_.Top()->distance();
frontier_.Pop();
not_visited_.erase(node);
added_to_the_frontier_.erase(node);
return node;
}
void AStarSP::Update(int node) {
for (absl::flat_hash_set<int>::const_iterator it = not_visited_.begin();
it != not_visited_.end(); ++it) {
const int other_node = *it;
const int64 graph_node_i = graph_(node, other_node);
if (graph_node_i != disconnected_distance_) {
if (added_to_the_frontier_.find(other_node) ==
added_to_the_frontier_.end()) {
frontier_.Add(&elements_[other_node]);
added_to_the_frontier_.insert(other_node);
}
const int64 other_distance = elements_[node].distance() + graph_node_i;
if (elements_[other_node].distance() > other_distance) {
elements_[other_node].set_distance(other_distance);
elements_[other_node].set_distance_with_heuristic(
other_distance + heuristic_(other_node));
frontier_.NoteChangedPriority(&elements_[other_node]);
predecessor_[other_node] = node;
}
}
}
}
void AStarSP::FindPath(int dest, std::vector<int>* nodes) {
int j = dest;
nodes->push_back(j);
while (predecessor_[j] != -1) {
nodes->push_back(predecessor_[j]);
j = predecessor_[j];
}
}
bool AStarSP::ShortestPath(int end_node, std::vector<int>* nodes) {
Initialize();
bool found = false;
while (!frontier_.IsEmpty()) {
int64 distance;
int node = SelectClosestNode(&distance);
if (distance == kInfinity) {
found = false;
break;
} else if (node == end_node) {
found = true;
break;
}
Update(node);
}
if (found) {
FindPath(end_node, nodes);
}
return found;
}
bool AStarShortestPath(int node_count, int start_node, int end_node,
std::function<int64(int, int)> graph,
std::function<int64(int)> heuristic,
int64 disconnected_distance, std::vector<int>* nodes) {
AStarSP bf(node_count, start_node, std::move(graph), std::move(heuristic),
disconnected_distance);
return bf.ShortestPath(end_node, nodes);
}
} // namespace operations_research