forked from PFCCLab/PPOCRLabel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_ocr_train_val_test.py
178 lines (157 loc) · 6.29 KB
/
gen_ocr_train_val_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# coding:utf8
import os
import shutil
import random
import argparse
# 删除划分的训练集、验证集、测试集文件夹,重新创建一个空的文件夹
def isCreateOrDeleteFolder(path, flag):
flagPath = os.path.join(path, flag)
if os.path.exists(flagPath):
shutil.rmtree(flagPath)
os.makedirs(flagPath)
flagAbsPath = os.path.abspath(flagPath)
return flagAbsPath
def splitTrainVal(
root,
abs_train_root_path,
abs_val_root_path,
abs_test_root_path,
train_txt,
val_txt,
test_txt,
flag,
):
data_abs_path = os.path.abspath(root)
label_file_name = args.detLabelFileName if flag == "det" else args.recLabelFileName
label_file_path = os.path.join(data_abs_path, label_file_name)
with open(label_file_path, "r", encoding="UTF-8") as label_file:
label_file_content = label_file.readlines()
random.shuffle(label_file_content)
label_record_len = len(label_file_content)
for index, label_record_info in enumerate(label_file_content):
image_relative_path, image_label = label_record_info.split("\t")
image_name = os.path.basename(image_relative_path)
if flag == "det":
image_path = os.path.join(data_abs_path, image_name)
elif flag == "rec":
image_path = os.path.join(
data_abs_path, args.recImageDirName, image_name
)
train_val_test_ratio = args.trainValTestRatio.split(":")
train_ratio = eval(train_val_test_ratio[0]) / 10
val_ratio = train_ratio + eval(train_val_test_ratio[1]) / 10
cur_ratio = index / label_record_len
if cur_ratio < train_ratio:
image_copy_path = os.path.join(abs_train_root_path, image_name)
shutil.copy(image_path, image_copy_path)
train_txt.write("{}\t{}".format(image_copy_path, image_label))
elif cur_ratio >= train_ratio and cur_ratio < val_ratio:
image_copy_path = os.path.join(abs_val_root_path, image_name)
shutil.copy(image_path, image_copy_path)
val_txt.write("{}\t{}".format(image_copy_path, image_label))
else:
image_copy_path = os.path.join(abs_test_root_path, image_name)
shutil.copy(image_path, image_copy_path)
test_txt.write("{}\t{}".format(image_copy_path, image_label))
# 删掉存在的文件
def removeFile(path):
if os.path.exists(path):
os.remove(path)
def genDetRecTrainVal(args):
detAbsTrainRootPath = isCreateOrDeleteFolder(args.detRootPath, "train")
detAbsValRootPath = isCreateOrDeleteFolder(args.detRootPath, "val")
detAbsTestRootPath = isCreateOrDeleteFolder(args.detRootPath, "test")
recAbsTrainRootPath = isCreateOrDeleteFolder(args.recRootPath, "train")
recAbsValRootPath = isCreateOrDeleteFolder(args.recRootPath, "val")
recAbsTestRootPath = isCreateOrDeleteFolder(args.recRootPath, "test")
removeFile(os.path.join(args.detRootPath, "train.txt"))
removeFile(os.path.join(args.detRootPath, "val.txt"))
removeFile(os.path.join(args.detRootPath, "test.txt"))
removeFile(os.path.join(args.recRootPath, "train.txt"))
removeFile(os.path.join(args.recRootPath, "val.txt"))
removeFile(os.path.join(args.recRootPath, "test.txt"))
detTrainTxt = open(
os.path.join(args.detRootPath, "train.txt"), "a", encoding="UTF-8"
)
detValTxt = open(os.path.join(args.detRootPath, "val.txt"), "a", encoding="UTF-8")
detTestTxt = open(os.path.join(args.detRootPath, "test.txt"), "a", encoding="UTF-8")
recTrainTxt = open(
os.path.join(args.recRootPath, "train.txt"), "a", encoding="UTF-8"
)
recValTxt = open(os.path.join(args.recRootPath, "val.txt"), "a", encoding="UTF-8")
recTestTxt = open(os.path.join(args.recRootPath, "test.txt"), "a", encoding="UTF-8")
splitTrainVal(
args.datasetRootPath,
detAbsTrainRootPath,
detAbsValRootPath,
detAbsTestRootPath,
detTrainTxt,
detValTxt,
detTestTxt,
"det",
)
for root, dirs, files in os.walk(args.datasetRootPath):
for dir in dirs:
if dir == "crop_img":
splitTrainVal(
root,
recAbsTrainRootPath,
recAbsValRootPath,
recAbsTestRootPath,
recTrainTxt,
recValTxt,
recTestTxt,
"rec",
)
else:
continue
break
if __name__ == "__main__":
# 功能描述:分别划分检测和识别的训练集、验证集、测试集
# 说明:可以根据自己的路径和需求调整参数,图像数据往往多人合作分批标注,每一批图像数据放在一个文件夹内用PPOCRLabel进行标注,
# 如此会有多个标注好的图像文件夹汇总并划分训练集、验证集、测试集的需求
parser = argparse.ArgumentParser()
parser.add_argument(
"--trainValTestRatio",
type=str,
default="6:2:2",
help="ratio of trainset:valset:testset",
)
parser.add_argument(
"--datasetRootPath",
type=str,
default="../train_data/",
help="path to the dataset marked by ppocrlabel, E.g, dataset folder named 1,2,3...",
)
parser.add_argument(
"--detRootPath",
type=str,
default="../train_data/det",
help="the path where the divided detection dataset is placed",
)
parser.add_argument(
"--recRootPath",
type=str,
default="../train_data/rec",
help="the path where the divided recognition dataset is placed",
)
parser.add_argument(
"--detLabelFileName",
type=str,
default="Label.txt",
help="the name of the detection annotation file",
)
parser.add_argument(
"--recLabelFileName",
type=str,
default="rec_gt.txt",
help="the name of the recognition annotation file",
)
parser.add_argument(
"--recImageDirName",
type=str,
default="crop_img",
help="the name of the folder where the cropped recognition dataset is located",
)
args = parser.parse_args()
genDetRecTrainVal(args)