-
Notifications
You must be signed in to change notification settings - Fork 35
/
runner_stoic21.py
457 lines (398 loc) · 15.6 KB
/
runner_stoic21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""
(C) Copyright 2021 IBM Corp.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Created on June 30, 2021
"""
import copy
import logging
import os
from typing import OrderedDict
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torch.optim as optim
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
from torch.utils.data.dataloader import DataLoader
import fuse.utils.gpu as GPU
import fuse_examples.imaging.classification.stoic21.dataset as dataset
from fuse.data.datasets.dataset_default import DatasetDefault
from fuse.data.utils.collates import CollateDefault
from fuse.data.utils.samplers import BatchSamplerDefault
from fuse.dl.lightning.pl_funcs import convert_predictions_to_dataframe
from fuse.dl.lightning.pl_module import LightningModuleDefault
from fuse.dl.losses.loss_default import LossDefault
from fuse.dl.models import ModelMultiHead
from fuse.dl.models.backbones.backbone_resnet_3d import BackboneResnet3D
from fuse.dl.models.heads.heads_3D import Head3D
from fuse.eval.evaluator import EvaluatorDefault
from fuse.eval.metrics.classification.metrics_classification_common import (
MetricAccuracy,
MetricAUCROC,
MetricROCCurve,
)
from fuse.eval.metrics.classification.metrics_thresholding_common import (
MetricApplyThresholds,
)
from fuse.utils.file_io.file_io import create_dir, save_dataframe
from fuse.utils.ndict import NDict
from fuse.utils.utils_debug import FuseDebug
from fuse.utils.utils_logger import fuse_logger_start
###########################################################################################################
# Fuse
###########################################################################################################
##########################################
# Debug modes
##########################################
mode = "default" # Options: 'default', 'debug'. See details in FuseDebug
debug = FuseDebug(mode)
##########################################qQ
# Output Paths
##########################################
assert (
"STOIC21_DATA_PATH" in os.environ
), "Expecting environment variable STOIC21_DATA_PATH to be set. Follow the instruction in example README file to download and set the path to the data"
ROOT = "_examples/stoic21" # TODO: fill path here
model_dir = os.path.join(ROOT, "model_dir")
PATHS = {
"model_dir": model_dir,
"cache_dir": os.path.join(ROOT, "cache_dir"),
"data_split_filename": os.path.join(ROOT, "stoic21_split.pkl"),
"data_dir": os.environ["STOIC21_DATA_PATH"],
"inference_dir": os.path.join(model_dir, "infer_dir"),
"eval_dir": os.path.join(model_dir, "eval_dir"),
}
NUM_GPUS = 1
##########################################
# Train Common Params
##########################################
TRAIN_COMMON_PARAMS = {}
# ============
# Model
# ============
TRAIN_COMMON_PARAMS["model"] = dict(
imaging_dropout=0.5, fused_dropout=0.0, clinical_dropout=0.0
)
# ============
# Data
# ============
TRAIN_COMMON_PARAMS["data.batch_size"] = 4
TRAIN_COMMON_PARAMS["data.train_num_workers"] = 16
TRAIN_COMMON_PARAMS["data.validation_num_workers"] = 16
TRAIN_COMMON_PARAMS["data.num_folds"] = 5
TRAIN_COMMON_PARAMS["data.train_folds"] = [0, 1, 2, 3]
TRAIN_COMMON_PARAMS["data.validation_folds"] = [4]
# ===============
# PL Trainer
# ===============
TRAIN_COMMON_PARAMS["trainer.num_epochs"] = 50
TRAIN_COMMON_PARAMS["trainer.num_devices"] = NUM_GPUS
TRAIN_COMMON_PARAMS["trainer.accelerator"] = "gpu"
# ===============
# Optimizer
# ===============
TRAIN_COMMON_PARAMS["opt.lr"] = 1e-3
TRAIN_COMMON_PARAMS["opt.weight_decay"] = 0.005
def create_model(
imaging_dropout: float, clinical_dropout: float, fused_dropout: float
) -> torch.nn.Module:
"""
creates the model
See Head3D for details about imaging_dropout, clinical_dropout, fused_dropout
"""
model = ModelMultiHead(
conv_inputs=("data.input.img",),
backbone=BackboneResnet3D(in_channels=1),
heads=[
Head3D(
head_name="classification",
mode="classification",
conv_inputs=[("model.backbone_features", 512)],
dropout_rate=imaging_dropout,
append_dropout_rate=clinical_dropout,
fused_dropout_rate=fused_dropout,
num_outputs=2,
append_features=[("data.input.clinical", 8)],
append_layers_description=(256, 128),
),
],
)
return model
#################################
# Train Template
#################################
def run_train(
train_dataset: DatasetDefault,
validation_dataset: DatasetDefault,
paths: dict,
train_params: dict,
) -> None:
# ==============================================================================
# Logger
# ==============================================================================
fuse_logger_start(
output_path=paths["model_dir"], console_verbose_level=logging.INFO
)
lightning_csv_logger = CSVLogger(
save_dir=paths["model_dir"], name="lightning_csv_logs"
)
lightning_tb_logger = TensorBoardLogger(
save_dir=paths["model_dir"], name="lightning_tb_logs"
)
lgr = logging.getLogger("Fuse")
lgr.info("Fuse Train", {"attrs": ["bold", "underline"]})
lgr.info(f'model_dir={paths["model_dir"]}', {"color": "magenta"})
lgr.info(f'cache_dir={paths["cache_dir"]}', {"color": "magenta"})
# ==============================================================================
# Data
# ==============================================================================
# Train Data
lgr.info("Train Data:", {"attrs": "bold"})
lgr.info("- Create sampler:")
sampler = BatchSamplerDefault(
dataset=train_dataset,
balanced_class_name="data.gt.probSevere",
num_balanced_classes=2,
batch_size=train_params["data.batch_size"],
balanced_class_weights=None,
)
lgr.info("- Create sampler: Done")
# Create dataloader
train_dataloader = DataLoader(
dataset=train_dataset,
batch_sampler=sampler,
collate_fn=CollateDefault(),
num_workers=train_params["data.train_num_workers"],
)
lgr.info("Train Data: Done", {"attrs": "bold"})
# dataloader
validation_dataloader = DataLoader(
dataset=validation_dataset,
batch_size=train_params["data.batch_size"],
collate_fn=CollateDefault(),
num_workers=train_params["data.validation_num_workers"],
)
lgr.info("Validation Data: Done", {"attrs": "bold"})
# ==============================================================================
# Model
# ==============================================================================
model = create_model(**train_params["model"])
# ====================================================================================
# Loss
# ====================================================================================
losses = {
"cls_loss": LossDefault(
pred="model.logits.classification",
target="data.gt.probSevere",
callable=F.cross_entropy,
weight=1.0,
),
}
# ====================================================================================
# Metrics
# ====================================================================================
train_metrics = OrderedDict(
[
(
"auc",
MetricAUCROC(
pred="model.output.classification", target="data.gt.probSevere"
),
),
]
)
validation_metrics = copy.deepcopy(
train_metrics
) # use the same metrics in validation as well
# either a dict with arguments to pass to ModelCheckpoint or list dicts for multiple ModelCheckpoint callbacks (to monitor and save checkpoints for more then one metric).
best_epoch_source = dict(
monitor="validation.metrics.auc",
mode="max",
)
# ====================================================================================
# Training components
# ====================================================================================
# create optimizer
optimizer = optim.SGD(
model.parameters(),
lr=train_params["opt.lr"],
weight_decay=train_params["opt.weight_decay"],
momentum=0.9,
nesterov=True,
)
# create learning scheduler
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer)
lr_sch_config = dict(scheduler=lr_scheduler, monitor="validation.losses.total_loss")
# optimizer and lr sch - see pl.LightningModule.configure_optimizers return value for all options
optimizers_and_lr_schs = dict(optimizer=optimizer, lr_scheduler=lr_sch_config)
# =====================================================================================
# Train
# =====================================================================================
lgr.info("Train:", {"attrs": "bold"})
# create instance of PL module - FuseMedML generic version
pl_module = LightningModuleDefault(
model_dir=paths["model_dir"],
model=model,
losses=losses,
train_metrics=train_metrics,
validation_metrics=validation_metrics,
best_epoch_source=best_epoch_source,
optimizers_and_lr_schs=optimizers_and_lr_schs,
)
# create lightning trainer.
pl_trainer = pl.Trainer(
default_root_dir=paths["model_dir"],
max_epochs=train_params["trainer.num_epochs"],
accelerator=train_params["trainer.accelerator"],
devices=train_params["trainer.num_devices"],
logger=[lightning_csv_logger, lightning_tb_logger],
)
# train
pl_trainer.fit(pl_module, train_dataloader, validation_dataloader)
lgr.info("Train: Done", {"attrs": "bold"})
######################################
# Inference Common Params
######################################
INFER_COMMON_PARAMS = {}
INFER_COMMON_PARAMS["infer_filename"] = "infer_file.gz"
INFER_COMMON_PARAMS["checkpoint"] = "best_epoch.ckpt"
INFER_COMMON_PARAMS["data.infer_folds"] = [4] # infer validation set
INFER_COMMON_PARAMS["data.batch_size"] = 4
INFER_COMMON_PARAMS["data.num_workers"] = 16
INFER_COMMON_PARAMS["model"] = TRAIN_COMMON_PARAMS["model"]
INFER_COMMON_PARAMS["trainer.num_devices"] = 1 # infer must use single device
INFER_COMMON_PARAMS["trainer.accelerator"] = "gpu"
######################################
# Inference Template
######################################
def run_infer(dataset: DatasetDefault, paths: dict, infer_params: dict) -> None:
create_dir(paths["inference_dir"])
infer_file = os.path.join(paths["inference_dir"], infer_params["infer_filename"])
checkpoint_file = os.path.join(paths["model_dir"], infer_params["checkpoint"])
#### Logger
fuse_logger_start(
output_path=paths["inference_dir"], console_verbose_level=logging.INFO
)
lgr = logging.getLogger("Fuse")
lgr.info("Fuse Inference", {"attrs": ["bold", "underline"]})
lgr.info(f"infer_filename={infer_file}", {"color": "magenta"})
infer_dataloader = DataLoader(
dataset=dataset, collate_fn=CollateDefault(), batch_size=2, num_workers=2
)
# load python lightning module
model = create_model(**infer_params["model"])
pl_module = LightningModuleDefault.load_from_checkpoint(
checkpoint_file,
model_dir=paths["model_dir"],
model=model,
map_location="cpu",
strict=True,
)
# set the prediction keys to extract (the ones used be the evaluation function).
pl_module.set_predictions_keys(
["model.output.classification", "data.gt.probSevere"]
) # which keys to extract and dump into file
# create a trainer instance
pl_trainer = pl.Trainer(
default_root_dir=paths["model_dir"],
accelerator=infer_params["trainer.accelerator"],
devices=infer_params["trainer.num_devices"],
logger=None,
)
predictions = pl_trainer.predict(
pl_module, infer_dataloader, return_predictions=True
)
# convert list of batch outputs into a dataframe
infer_df = convert_predictions_to_dataframe(predictions)
save_dataframe(infer_df, infer_file)
######################################
# Eval Common Params
######################################
EVAL_COMMON_PARAMS = {}
EVAL_COMMON_PARAMS["infer_filename"] = INFER_COMMON_PARAMS["infer_filename"]
##########################################
# Dataset Common Params
##########################################
DATASET_COMMON_PARAMS = {}
DATASET_COMMON_PARAMS["train"] = TRAIN_COMMON_PARAMS
DATASET_COMMON_PARAMS["infer"] = INFER_COMMON_PARAMS
######################################
# Eval Template
######################################
def run_eval(paths: dict, eval_params: dict) -> NDict:
infer_file = os.path.join(paths["inference_dir"], eval_params["infer_filename"])
fuse_logger_start(output_path=None, console_verbose_level=logging.INFO)
lgr = logging.getLogger("Fuse")
lgr.info("Fuse Eval", {"attrs": ["bold", "underline"]})
# metrics
metrics = OrderedDict(
[
(
"operation_point",
MetricApplyThresholds(pred="model.output.classification"),
), # will apply argmax
(
"accuracy",
MetricAccuracy(
pred="results:metrics.operation_point.cls_pred",
target="data.gt.probSevere",
),
),
(
"roc",
MetricROCCurve(
pred="model.output.classification",
target="data.gt.probSevere",
output_filename=os.path.join(
paths["inference_dir"], "roc_curve.png"
),
),
),
(
"auc",
MetricAUCROC(
pred="model.output.classification", target="data.gt.probSevere"
),
),
]
)
# create evaluator
evaluator = EvaluatorDefault()
# run
results = evaluator.eval(
ids=None, data=infer_file, metrics=metrics, output_dir=paths["eval_dir"]
)
return results
######################################
# Run
######################################
if __name__ == "__main__":
# allocate gpus
# uncomment if you want to use specific gpus instead of automatically looking for free ones
force_gpus = None # [0]
GPU.choose_and_enable_multiple_gpus(NUM_GPUS, force_gpus=force_gpus)
RUNNING_MODES = ["train", "infer", "eval"] # Options: 'train', 'infer', 'eval'
train_dataset, infer_dataset = dataset.create_dataset(
paths=PATHS, params=DATASET_COMMON_PARAMS
)
# train
if "train" in RUNNING_MODES:
run_train(
train_dataset=train_dataset,
validation_dataset=infer_dataset,
paths=PATHS,
train_params=TRAIN_COMMON_PARAMS,
)
# infer
if "infer" in RUNNING_MODES:
run_infer(dataset=infer_dataset, paths=PATHS, infer_params=INFER_COMMON_PARAMS)
# eval
if "eval" in RUNNING_MODES:
run_eval(paths=PATHS, eval_params=EVAL_COMMON_PARAMS)