-
Notifications
You must be signed in to change notification settings - Fork 6
/
phasesymmono.m
408 lines (353 loc) · 18.1 KB
/
phasesymmono.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
% PHASESYMMONO - phase symmetry of an image using monogenic filters
%
% This function calculates the phase symmetry of points in an image.
% This is a contrast invariant measure of symmetry. This function can be
% used as a line and blob detector. The greyscale 'polarity' of the lines
% that you want to find can be specified.
%
% This code is considerably faster than PHASESYM but you may prefer the
% output from PHASESYM's oriented filters.
%
% There are potentially many arguments, here is the full usage:
%
% [phaseSym, symmetryEnergy, T] = ...
% phasesymmono(im, nscale, minWaveLength, mult, ...
% sigmaOnf, k, polarity, noiseMethod)
%
% However, apart from the image, all parameters have defaults and the
% usage can be as simple as:
%
% phaseSym = phasesymmono(im);
%
% Arguments:
% Default values Description
%
% nscale 5 - Number of wavelet scales, try values 3-6
% minWaveLength 3 - Wavelength of smallest scale filter.
% mult 2.1 - Scaling factor between successive filters.
% sigmaOnf 0.55 - Ratio of the standard deviation of the Gaussian
% describing the log Gabor filter's transfer function
% in the frequency domain to the filter center frequency.
% k 2.0 - No of standard deviations of the noise energy beyond
% the mean at which we set the noise threshold point.
% You may want to vary this up to a value of 10 or
% 20 for noisy images
% polarity 0 - Controls 'polarity' of symmetry features to find.
% 1 - just return 'bright' points
% -1 - just return 'dark' points
% 0 - return bright and dark points.
% noiseMethod -1 - Parameter specifies method used to determine
% noise statistics.
% -1 use median of smallest scale filter responses
% -2 use mode of smallest scale filter responses
% 0+ use noiseMethod value as the fixed noise threshold
% A value of 0 will turn off all noise compensation.
%
% Return values:
% phaseSym - Phase symmetry image (values between 0 and 1).
% symmetryEnergy - Un-normalised raw symmetry energy which may be
% more to your liking.
% T - Calculated noise threshold (can be useful for
% diagnosing noise characteristics of images)
%
%
% Notes on specifying parameters:
%
% The parameters can be specified as a full list eg.
% >> phaseSym = phasesym(im, 5, 3, 2.5, 0.55, 2.0, 0);
%
% or as a partial list with unspecified parameters taking on default values
% >> phaseSym = phasesym(im, 5, 3);
%
% or as a partial list of parameters followed by some parameters specified via a
% keyword-value pair, remaining parameters are set to defaults, for example:
% >> phaseSym = phasesym(im, 5, 3, 'polarity',-1, 'k', 2.5);
%
% The convolutions are done via the FFT. Many of the parameters relate to the
% specification of the filters in the frequency plane. The values do not seem
% to be very critical and the defaults are usually fine. You may want to
% experiment with the values of 'nscales' and 'k', the noise compensation factor.
%
% Notes on filter settings to obtain even coverage of the spectrum
% sigmaOnf .85 mult 1.3
% sigmaOnf .75 mult 1.6 (filter bandwidth ~1 octave)
% sigmaOnf .65 mult 2.1
% sigmaOnf .55 mult 3 (filter bandwidth ~2 octaves)
%
% For maximum speed the input image should have dimensions that correspond to
% powers of 2, but the code will operate on images of arbitrary size.
%
% See Also: PHASESYM, PHASECONGMONO
% References:
% Peter Kovesi, "Symmetry and Asymmetry From Local Phase" AI'97, Tenth
% Australian Joint Conference on Artificial Intelligence. 2 - 4 December
% 1997. http://www.cs.uwa.edu.au/pub/robvis/papers/pk/ai97.ps.gz.
%
% Peter Kovesi, "Image Features From Phase Congruency". Videre: A
% Journal of Computer Vision Research. MIT Press. Volume 1, Number 3,
% Summer 1999 http://mitpress.mit.edu/e-journals/Videre/001/v13.html
%
% Michael Felsberg and Gerald Sommer, "A New Extension of Linear Signal
% Processing for Estimating Local Properties and Detecting Features". DAGM
% Symposium 2000, Kiel
%
% Michael Felsberg and Gerald Sommer. "The Monogenic Signal" IEEE
% Transactions on Signal Processing, 49(12):3136-3144, December 2001
% July 2008 Code developed from phasesym where local phase information
% calculated using Monogenic Filters.
% April 2009 Noise compensation simplified to speedup execution.
% Options to calculate noise statistics via median or mode of
% smallest filter response. Option to use a fixed threshold.
% Return of T for 'instrumentation' of noise detection/compensation.
% Removal of orientation calculation from phasesym (not clear
% how best to calculate this from monogenic filter outputs)
% June 2009 Clean up
% Sept 2017 Changed to use FILTERGRID
% Copyright (c) 1996-2017 Peter Kovesi
% http://www.peterkovesi.com
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% The software is provided "as is", without warranty of any kind.
function[phaseSym, symmetryEnergy, T] = phasesymmono(varargin)
% Get arguments and/or default values
[im, nscale, minWaveLength, mult, sigmaOnf, k, ...
polarity, noiseMethod] = checkargs(varargin(:));
epsilon = .0001; % Used to prevent division by zero.
[rows,cols] = size(im);
IM = fft2(im); % Fourier transform of image
zero = zeros(rows,cols);
symmetryEnergy = zero; % Matrix for accumulating weighted phase
% symmetry values (energy).
sumAn = zero; % Matrix for accumulating filter response
% amplitude values.
% Set up data for filter construction
[radius, u1, u2] = FilterGrid(rows,cols);
% Get rid of the 0 radius value in the middle (at top left corner after
% fftshifting) so that taking the log of the radius, or dividing by the
% radius, will not cause trouble.
radius(1,1) = 1;
% Construct the monogenic filters in the frequency domain. The two
% filters would normally be constructed as follows
% H1 = i*u1./radius;
% H2 = i*u2./radius;
% However the two filters can be packed together as a complex valued
% matrix, one in the real part and one in the imaginary part. Do this by
% multiplying H2 by i and then adding it to H1 (note the subtraction
% because i*i = -1). When the convolution is performed via the fft the
% real part of the result will correspond to the convolution with H1 and
% the imaginary part with H2. This allows the two convolutions to be
% done as one in the frequency domain, saving time and memory.
H = (i*u1 - u2)./radius;
% The two monogenic filters H1 and H2 are not selective in terms of the
% magnitudes of the frequencies. The code below generates bandpass
% log-Gabor filters which are point-wise multiplied by IM to produce
% different bandpass versions of the image before being convolved with H1
% and H2
% First construct a low-pass filter that is as large as possible, yet falls
% away to zero at the boundaries. All filters are multiplied by
% this to ensure no extra frequencies at the 'corners' of the FFT are
% incorporated as this can upset the normalisation process when
% calculating phase symmetry
lp = LowPassFilter([rows,cols],.4,10); % Radius .4, 'sharpness' 10
for s = 1:nscale
wavelength = minWaveLength*mult^(s-1);
fo = 1.0/wavelength; % Centre frequency of filter.
logGabor = exp((-(log(radius/fo)).^2) / (2 * log(sigmaOnf)^2));
logGabor = logGabor.*lp; % Apply low-pass filter
logGabor(1,1) = 0; % Set the value at the 0 frequency point of the filter
% back to zero (undo the radius fudge).
IMF = IM.*logGabor; % Bandpassed image in the frequency domain
f = real(ifft2(IMF)); % Bandpassed image in spatial domain
h = ifft2(IMF.*H); % Bandpassed monogenic filtering, real part of h contains
% convolution result with h1, imaginary part
% contains convolution result with h2.
hAmp2 = real(h).^2 + imag(h).^2; % Squared amplitude of h1 h2 filter results
sumAn = sumAn + sqrt(f.^2 + hAmp2); % Magnitude of Energy.
% Now calculate the phase symmetry measure.
if polarity == 0 % look for 'white' and 'black' spots
symmetryEnergy = symmetryEnergy + abs(f) - sqrt(hAmp2);
elseif polarity == 1 % Just look for 'white' spots
symmetryEnergy = symmetryEnergy + f - sqrt(hAmp2);
elseif polarity == -1 % Just look for 'black' spots
symmetryEnergy = symmetryEnergy - f - sqrt(hAmp2);
end
% At the smallest scale estimate noise characteristics from the
% distribution of the filter amplitude responses stored in sumAn.
% tau is the Rayleigh parameter that is used to specify the
% distribution.
if s == 1
if noiseMethod == -1 % Use median to estimate noise statistics
tau = median(sumAn(:))/sqrt(log(4));
elseif noiseMethod == -2 % Use mode to estimate noise statistics
tau = rayleighmode(sumAn(:));
end
end
end % For each scale
% Compensate for noise
%
% Assuming the noise is Gaussian the response of the filters to noise will
% form Rayleigh distribution. We use the filter responses at the smallest
% scale as a guide to the underlying noise level because the smallest scale
% filters spend most of their time responding to noise, and only
% occasionally responding to features. Either the median, or the mode, of
% the distribution of filter responses can be used as a robust statistic to
% estimate the distribution mean and standard deviation as these are related
% to the median or mode by fixed constants. The response of the larger
% scale filters to noise can then be estimated from the smallest scale
% filter response according to their relative bandwidths.
%
% This code assumes that the expected reponse to noise on the phase symmetry
% calculation is simply the sum of the expected noise responses of each of
% the filters. This is a simplistic overestimate, however these two
% quantities should be related by some constant that will depend on the
% filter bank being used. Appropriate tuning of the parameter 'k' will
% allow you to produce the desired output. (though the value of k seems to
% be not at all critical)
if noiseMethod >= 0 % We are using a fixed noise threshold
T = noiseMethod; % use supplied noiseMethod value as the threshold
else
% Estimate the effect of noise on the sum of the filter responses as
% the sum of estimated individual responses (this is a simplistic
% overestimate). As the estimated noise response at succesive scales
% is scaled inversely proportional to bandwidth we have a simple
% geometric sum.
totalTau = tau * (1 - (1/mult)^nscale)/(1-(1/mult));
% Calculate mean and std dev from tau using fixed relationship
% between these parameters and tau. See
% http://mathworld.wolfram.com/RayleighDistribution.html
EstNoiseEnergyMean = totalTau*sqrt(pi/2); % Expected mean and std
EstNoiseEnergySigma = totalTau*sqrt((4-pi)/2); % values of noise energy
% Noise threshold, make sure it is not less than epsilon
T = max(EstNoiseEnergyMean + k*EstNoiseEnergySigma, epsilon);
end
% Apply noise threshold - effectively wavelet denoising soft thresholding
% and normalize symmetryEnergy by the sumAn to obtain phase symmetry.
% Note the max operation is not necessary if you are after speed, it is
% just 'tidy' not having -ve symmetry values
phaseSym = max(symmetryEnergy-T, zero) ./ (sumAn + epsilon);
%------------------------------------------------------------------
% CHECKARGS
%
% Function to process the arguments that have been supplied, assign
% default values as needed and perform basic checks.
function [im, nscale, minWaveLength, mult, sigmaOnf, ...
k, polarity, noiseMethod] = checkargs(arg)
nargs = length(arg);
if nargs < 1
error('No image supplied as an argument');
end
% Set up default values for all arguments and then overwrite them
% with with any new values that may be supplied
im = [];
nscale = 5; % Number of wavelet scales.
minWaveLength = 3; % Wavelength of smallest scale filter.
mult = 2.1; % Scaling factor between successive filters.
sigmaOnf = 0.55; % Ratio of the standard deviation of the
% Gaussian describing the log Gabor filter's
% transfer function in the frequency domain
% to the filter center frequency.
k = 2.0; % No of standard deviations of the noise
% energy beyond the mean at which we set the
% noise threshold point.
polarity = 0; % Look for both black and white spots of symmetry
noiseMethod = -1; % Use the median response of smallest scale
% filter to estimate noise statistics
% Allowed argument reading states
allnumeric = 1; % Numeric argument values in predefined order
keywordvalue = 2; % Arguments in the form of string keyword
% followed by numeric value
readstate = allnumeric; % Start in the allnumeric state
if readstate == allnumeric
for n = 1:nargs
if isa(arg{n},'char')
readstate = keywordvalue;
break;
else
if n == 1, im = arg{n};
elseif n == 2, nscale = arg{n};
elseif n == 3, minWaveLength = arg{n};
elseif n == 4, mult = arg{n};
elseif n == 5, sigmaOnf = arg{n};
elseif n == 6, k = arg{n};
elseif n == 7, polarity = arg{n};
elseif n == 8, noiseMethod = arg{n};
end
end
end
end
% Code to handle parameter name - value pairs
if readstate == keywordvalue
while n < nargs
if ~isa(arg{n},'char') || ~isa(arg{n+1}, 'double')
error('There should be a parameter name - value pair');
end
if strncmpi(arg{n},'im' ,2), im = arg{n+1};
elseif strncmpi(arg{n},'nscale' ,2), nscale = arg{n+1};
elseif strncmpi(arg{n},'minWaveLength',2), minWaveLength = arg{n+1};
elseif strncmpi(arg{n},'mult' ,2), mult = arg{n+1};
elseif strncmpi(arg{n},'sigmaOnf',2), sigmaOnf = arg{n+1};
elseif strncmpi(arg{n},'k' ,1), k = arg{n+1};
elseif strncmpi(arg{n},'polarity',2), polarity = arg{n+1};
elseif strncmpi(arg{n},'noisemethod',3), noiseMethod = arg{n+1};
else error('Unrecognised parameter name');
end
n = n+2;
if n == nargs
error('Unmatched parameter name - value pair');
end
end
end
if isempty(im)
error('No image argument supplied');
end
if ~isa(im, 'double')
im = double(im);
end
if nscale < 1
error('nscale must be an integer >= 1');
end
if minWaveLength < 2
error('It makes little sense to have a wavelength < 2');
end
if polarity ~= -1 && polarity ~= 0 && polarity ~= 1
error('Allowed polarity values are -1, 0 and 1')
end
%-------------------------------------------------------------------------
% RAYLEIGHMODE
%
% Computes mode of a vector/matrix of data that is assumed to come from a
% Rayleigh distribution.
%
% Usage: rmode = rayleighmode(data, nbins)
%
% Arguments: data - data assumed to come from a Rayleigh distribution
% nbins - Optional number of bins to use when forming histogram
% of the data to determine the mode.
%
% Mode is computed by forming a histogram of the data over 50 bins and then
% finding the maximum value in the histogram. Mean and standard deviation
% can then be calculated from the mode as they are related by fixed
% constants.
%
% mean = mode * sqrt(pi/2)
% std dev = mode * sqrt((4-pi)/2)
%
% See
% http://mathworld.wolfram.com/RayleighDistribution.html
% http://en.wikipedia.org/wiki/Rayleigh_distribution
%
function rmode = rayleighmode(data, nbins)
if nargin == 1
nbins = 50; % Default number of histogram bins to use
end
mx = max(data(:));
edges = 0:mx/nbins:mx;
n = histc(data(:),edges);
[dum,ind] = max(n); % Find maximum and index of maximum in histogram
rmode = (edges(ind)+edges(ind+1))/2;