forked from sunghlim/DNN-fading-channel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
autoencoder.py
238 lines (198 loc) · 7.31 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# importing libs
import numpy as np
import tensorflow as tf
import scipy.io
import keras
from keras.layers import Input, Dense, GaussianNoise,Lambda,Dropout
from keras.layers.advanced_activations import LeakyReLU, PReLU
from keras.models import Model
from keras import regularizers
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam,SGD
from keras import backend as K
# for reproducing reslut
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
#set_random_seed(3)
tf.compat.v1.set_random_seed(3)
# defining parameters
# define (n,k) here for (n,k) autoencoder
# n = n_channel
# k = log2(M) ==> so for (7,4) autoencoder n_channel = 7 and M = 2^4 = 16
M = 16
k = np.log2(M)
k = int(k)
n_channel: int = 7
R = k/n_channel
print('M:',M,'k:',k,'n:',n_channel)
N_train = 200000
N_test = 100000
EPOCHS = 50
BATCH_SIZE = 256
EbNo_train_dB = 15
EbNo_train = 10**(EbNo_train_dB/10);#5.01187 # coverted 7 db of EbNo
print('EbNo_train', EbNo_train)
label = np.random.randint(M,size=N_train)
# creating one hot encoded vectors
data = []
for i in label:
temp = np.zeros(M)
temp[i] = 1
data.append(temp)
# checking data shape
data = np.array(data)
print(data.shape)
import matlab.engine
eng = matlab.engine.start_matlab()
eng.cd(r'/Users/shlim/Desktop/UWC simulator v2')
eng.channel_gen(N_train, N_test, n_channel, nargout=0)
# checking generated data with it's label
#temp_check = [17,23,45,67,89,96,72,250,350]
#for i in temp_check:
# print(label[i],data[i])
from scipy.io import loadmat
matlab_data1 = loadmat('channel_train.mat')
#h_train=matlab_data1['h_train']
h_train=np.absolute(matlab_data1['h_train'])
matlab_data2 = loadmat('channel_test.mat')
#h_test=matlab_data2['h_test']
h_test=np.absolute(matlab_data2['h_test'])
print('h_train=', h_train.shape)
print('h_test=', h_test.shape)
# defining autoencoder and it's layer
input_signal = Input(shape=(M,))
encoded = Dense(M, activation='relu')(input_signal)
encoded1 = Dense(n_channel, activation='linear')(encoded)
encoded2 = Lambda(lambda x: np.sqrt(n_channel)*K.l2_normalize(x, axis=1))(encoded1)
#encoded2 = BatchNormalization()(encoded1)
h = Input(shape=(n_channel,))
#hx = Lambda(lambda x: np.multiply(x[0], x[1]), output_shape=(n_channel,))([encoded2, h])
hx = Lambda(lambda x: np.multiply(x[0], x[1]))([encoded2, h])
y_out = GaussianNoise(np.sqrt(1 / (2 * R * EbNo_train)))(hx)
y_prime = Lambda(lambda x: K.concatenate([x[0], x[1]]))([h, y_out])
#y_prime = Lambda(lambda x: K.concatenate([x[0], np.multiply((np.multiply(h**2, (2 * R * EbNo_train))/(np.multiply(h**2, (2 * R * EbNo_train))+1)),x[1])]))([h, y_out])
#decoded0 = Dropout(0.4)(decoded0)
# decoded = Dense(M, activation='relu')(y_prime)
# decoded1 = Dense(M, activation='softmax')(decoded)
decoded0 = Dense(M, activation='linear')(y_prime)
#decoded0 = LeakyReLU(alpha=0.01)(y_prime)
decoded = Dense(M, activation='relu')(decoded0)
decoded1 = Dense(M, activation='softmax')(decoded)
autoencoder = Model(inputs=[input_signal, h], outputs=decoded1)
adam = Adam(lr=0.01)
autoencoder.compile(optimizer='rmsprop', loss='categorical_crossentropy')
# adam
# rmsprop
# printing summary of layers and it's trainable parameters
print(autoencoder.summary())
# traning auto encoder
autoencoder.fit([data, h_train], data,
epochs=EPOCHS,
batch_size=BATCH_SIZE)
# saving keras model
from keras.models import load_model
# if you want to save model then remove below comment
# autoencoder.save('autoencoder_v_best.model')
# making encoder from full autoencoder
encoder = Model(input_signal, encoded2)
# making decoder from full autoencoder
encoded_input = Input(shape=(2*n_channel,))
deco1 = autoencoder.layers[-3](encoded_input)
deco = autoencoder.layers[-2](deco1)
deco = autoencoder.layers[-1](deco)
decoder = Model(encoded_input, deco)
# deco = autoencoder.layers[-2](encoded_input)
# deco = autoencoder.layers[-1](deco)
# decoder = Model(encoded_input, deco)
# generating data for checking BER
# if you're not using t-sne for visulation than set N to 70,000 for better result
# for t-sne use less N like N = 1500
test_label = np.random.randint(M, size=N_test)
test_data = []
for i in test_label:
temp = np.zeros(M)
temp[i] = 1
test_data.append(temp)
test_data = np.array(test_data)
# checking generated data
temp_test = 6
print (test_data[temp_test][test_label[temp_test]],test_label[temp_test])
# for plotting learned consteallation diagram
#
scatter_plot = []
for i in range(0,M):
temp = np.zeros(M)
temp[i] = 1
scatter_plot.append(encoder.predict(np.expand_dims(temp,axis=0)))
scatter_plot = np.array(scatter_plot)
print (scatter_plot.shape)
# use this function for ploting constellation for higher dimenson like 7-D for (7,4) autoencoder
#
# x_emb = encoder.predict(test_data)
# noise_std = np.sqrt(1/(2*R*5.011))
# noise = noise_std * np.random.randn(N_test, n_channel)
# #x_emb = np.multiply(h_test, x_emb) + noise
# x_emb = x_emb + noise
# from sklearn.manifold import TSNE
# X_embedded = TSNE(learning_rate=700, n_components=2,n_iter=35000, random_state=0, perplexity=60).fit_transform(x_emb)
# print (X_embedded.shape)
# X_embedded = X_embedded / 7
# import matplotlib.pyplot as plt
# plt.scatter(X_embedded[:,0],X_embedded[:,1])
# #plt.axis((-2.5,2.5,-2.5,2.5))
# plt.grid()
# plt.show()
# # ploting constellation diagram
import matplotlib.pyplot as plt
scatter_plot = scatter_plot.reshape(M,n_channel,1)
plt.scatter(scatter_plot[:,0],scatter_plot[:,1])
plt.axis((-2.5,2.5,-2.5,2.5))
plt.grid()
plt.show()
scipy.io.savemat('constellation.mat', dict(constellation=scatter_plot))
def frange(x, y, jump):
while x < y:
yield x
x += jump
# calculating BER
# this is optimized BER function so it can handle large number of N
# previous code has another for loop which was making it slow
EbNodB_range = list(frange(-5,20,0.5))
ber = [None] * len(EbNodB_range)
for n in range(0, len(EbNodB_range)):
EbNo = 10.0 ** (EbNodB_range[n] / 10.0)
noise_std = np.sqrt(1 / (2 * R * EbNo))
noise_mean = 0
no_errors = 0
nn = N_test
noise = noise_std * np.random.randn(nn, n_channel)
encoded_signal = encoder.predict(test_data)
#enc_sig_numpy = np.array(encoded_signal)
#ave_power = np.mean(np.square(enc_sig_numpy), axis=1)
#print(ave_power > 1)
#print('encoded signal:', enc_sig_numpy)
#print('encoded signal average power:', ave_power)
#print('encoded_signal size', encoded_signal.shape)
final_signal = np.multiply(h_test, encoded_signal) + noise
pred_final_signal = decoder.predict(np.concatenate([h_test, final_signal], axis=1))
pred_output = np.argmax(pred_final_signal, axis=1)
no_errors = (pred_output != test_label)
no_errors = no_errors.astype(int).sum()
ber[n] = no_errors / nn
print('SNR:', EbNodB_range[n], 'BER:', ber[n])
# use below line for generating matlab like matrix which can be copy and paste for plotting ber graph in matlab
# print(ber[n], " ",end='')
# ploting ber curve
import matplotlib.pyplot as plt
from scipy import interpolate
plt.plot(EbNodB_range, ber, 'bo',label='Autoencoder(7,4)')
plt.yscale('log')
plt.xlabel('SNR Range')
plt.ylabel('Block Error Rate')
plt.grid()
plt.legend(loc='upper right',ncol = 1)
# for saving figure remove below comment
#plt.savefig('AutoEncoder_2_2_constrained_BER_matplotlib')
scipy.io.savemat('DNN.mat', dict(EbNodB=EbNodB_range, ber=ber))
plt.show()