-
Notifications
You must be signed in to change notification settings - Fork 5
/
CLLocation+SunriseSunset.m
313 lines (235 loc) · 8.74 KB
/
CLLocation+SunriseSunset.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
* Copyright (c) 2013, The Iconfactory. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of The Iconfactory nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE ICONFACTORY BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#import "CLLocation+SunriseSunset.h"
#import <Foundation/Foundation.h>
/*******************************************************************************************
http://williams.best.vwh.net/sunrise_sunset_algorithm.htm
Sunrise/Sunset Algorithm
Source:
Almanac for Computers, 1990
published by Nautical Almanac Office
United States Naval Observatory
Washington, DC 20392
Inputs:
day, month, year: date of sunrise/sunset
latitude, longitude: location for sunrise/sunset
zenith: Sun's zenith for sunrise/sunset
offical = 90 degrees 50'
civil = 96 degrees
nautical = 102 degrees
astronomical = 108 degrees
NOTE: longitude is positive for East and negative for West
NOTE: the algorithm assumes the use of a calculator with the
trig functions in "degree" (rather than "radian") mode. Most
programming languages assume radian arguments, requiring back
and forth convertions. The factor is 180/pi. So, for instance,
the equation RA = atan(0.91764 * tan(L)) would be coded as RA
= (180/pi)*atan(0.91764 * tan((pi/180)*L)) to give a degree
answer with a degree input for L.
1. first calculate the day of the year
N1 = floor(275 * month / 9)
N2 = floor((month + 9) / 12)
N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3))
N = N1 - (N2 * N3) + day - 30
2. convert the longitude to hour value and calculate an approximate time
lngHour = longitude / 15
if rising time is desired:
t = N + ((6 - lngHour) / 24)
if setting time is desired:
t = N + ((18 - lngHour) / 24)
3. calculate the Sun's mean anomaly
M = (0.9856 * t) - 3.289
4. calculate the Sun's true longitude
L = M + (1.916 * sin(M)) + (0.020 * sin(2 * M)) + 282.634
NOTE: L potentially needs to be adjusted into the range [0,360) by adding/subtracting 360
5a. calculate the Sun's right ascension
RA = atan(0.91764 * tan(L))
NOTE: RA potentially needs to be adjusted into the range [0,360) by adding/subtracting 360
5b. right ascension value needs to be in the same quadrant as L
Lquadrant = (floor( L/90)) * 90
RAquadrant = (floor(RA/90)) * 90
RA = RA + (Lquadrant - RAquadrant)
5c. right ascension value needs to be converted into hours
RA = RA / 15
6. calculate the Sun's declination
sinDec = 0.39782 * sin(L)
cosDec = cos(asin(sinDec))
7a. calculate the Sun's local hour angle
cosH = (cos(zenith) - (sinDec * sin(latitude))) / (cosDec * cos(latitude))
if (cosH > 1)
the sun never rises on this location (on the specified date)
if (cosH < -1)
the sun never sets on this location (on the specified date)
7b. finish calculating H and convert into hours
if if rising time is desired:
H = 360 - acos(cosH)
if setting time is desired:
H = acos(cosH)
H = H / 15
8. calculate local mean time of rising/setting
T = H + RA - (0.06571 * t) - 6.622
9. adjust back to UTC
UT = T - lngHour
NOTE: UT potentially needs to be adjusted into the range [0,24) by adding/subtracting 24
10. convert UT value to local time zone of latitude/longitude
localT = UT + localOffset
*******************************************************************************************/
// helpers to make it easier to transcribe the formula (which uses degrees everywhere)
inline static double deg_to_rad(double x)
{
return (M_PI / 180.0) * x;
}
inline static double rad_to_deg(double x)
{
return (180.0 / M_PI) * x;
}
inline static double deg_sin(double x)
{
return sin(deg_to_rad(x));
}
inline static double deg_asin(double x)
{
return rad_to_deg(asin(x));
}
inline static double deg_atan(double x)
{
return rad_to_deg(atan(x));
}
inline static double deg_tan(double x)
{
return tan(deg_to_rad(x));
}
inline static double deg_cos(double x)
{
return cos(deg_to_rad(x));
}
inline static double deg_acos(double x)
{
return rad_to_deg(acos(x));
}
inline static double normalize_range(double v, double max)
{
while (v < 0) {
v += max;
}
while (v >= max) {
v -= max;
}
return v;
}
typedef enum {
SunEventRise,
SunEventSet,
} SunEvent;
@implementation CLLocation (SunriseSunset)
- (NSDate *)dateForSunEvent:(const SunEvent)event withZenith:(const double)zenith
{
NSCalendar *cal = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDateComponents *dateComponents = [cal components:(NSYearCalendarUnit | NSMonthCalendarUnit | NSDayCalendarUnit | NSTimeZoneCalendarUnit) fromDate:self.timestamp];
const double month = [dateComponents month];
const double year = [dateComponents year];
const double day = [dateComponents day];
// step 1
const double N1 = floor(275.0 * month / 9.0);
const double N2 = floor((month + 9.0) / 12.0);
const double N3 = (1.0 + floor((year - 4.0 * floor(year / 4.0) + 2.0) / 3.0));
const double N = N1 - (N2 * N3) + day - 30.0;
// step 2
const double lngHour = self.coordinate.longitude / 15.0;
double t;
if (event == SunEventRise) {
t = N + ((6.0 - lngHour) / 24.0);
} else {
t = N + ((18.0 - lngHour) / 24.0);
}
// step 3
const double M = (0.9856 * t) - 3.289;
// step 4
double L = M + (1.916 * deg_sin(M)) + (0.020 * deg_sin(2 * M)) + 282.634;
L = normalize_range(L, 360);
// step 5
double RA = deg_atan(0.91764 * deg_tan(L));
RA = normalize_range(RA, 360);
const double Lquadrant = (floor(L/90.0)) * 90.0;
const double RAquadrant = (floor(RA/90.0)) * 90.0;
RA = RA + (Lquadrant - RAquadrant);
RA = RA / 15.0;
// step 6
const double sinDec = 0.39782 * deg_sin(L);
const double cosDec = deg_cos(deg_asin(sinDec));
// step 7
const double cosH = (deg_cos(zenith) - (sinDec * deg_sin(self.coordinate.latitude))) / (cosDec * deg_cos(self.coordinate.latitude));
if (cosH > 1) {
// the sun never rises on this location (on the specified date)
return nil;
} else if (cosH < -1) {
// the sun never sets on this location (on the specified date)
return nil;
}
double H;
if (event == SunEventRise) {
H = 360.0 - deg_acos(cosH);
} else {
H = deg_acos(cosH);
}
H = H / 15.0;
// step 8
const double T = H + RA - (0.06571 * t) - 6.622;
// step 9
const double UT = normalize_range(T - lngHour, 24);
// step 10
const double localOffset = [[dateComponents timeZone] secondsFromGMTForDate:self.timestamp] / 3600.0;
const double localT = normalize_range(UT + localOffset, 24);
// convert to an NSDate
const NSInteger hour = trunc(localT);
const NSInteger hourSeconds = 3600 * (localT - hour);
const NSInteger minute = hourSeconds / 60;
const NSInteger second = hourSeconds - (minute * 60);
[dateComponents setHour:hour];
[dateComponents setMinute:minute];
[dateComponents setSecond:second];
return [cal dateFromComponents:dateComponents];
}
- (NSDate *)sunriseDate
{
return [self dateForSunEvent:SunEventRise withZenith:90];
}
- (NSDate *)sunsetDate
{
return [self dateForSunEvent:SunEventSet withZenith:90];
}
- (NSDate *)dawnDate
{
return [self dateForSunEvent:SunEventRise withZenith:83];
}
- (NSDate *)duskDate
{
return [self dateForSunEvent:SunEventSet withZenith:83];
}
@end