-
-
Notifications
You must be signed in to change notification settings - Fork 143
/
custom_routes.py
2053 lines (1688 loc) · 71.6 KB
/
custom_routes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from io import BytesIO
from pprint import pprint
from aiohttp import web
import os
import requests
import folder_paths
import json
import server
from PIL import Image
import time
import execution
import random
import traceback
import uuid
import asyncio
import logging
from urllib.parse import quote
import threading
import hashlib
import aiohttp
from aiohttp import ClientSession, web
import aiofiles
from typing import Dict, List, Union, Any, Optional
from PIL import Image
import copy
import struct
from aiohttp import web, ClientSession, ClientError, ClientTimeout, ClientResponseError
import atexit
from model_management import get_torch_device
import torch
import psutil
from collections import OrderedDict
# Global session
client_session = None
# def create_client_session():
# global client_session
# if client_session is None:
# client_session = aiohttp.ClientSession()
async def ensure_client_session():
global client_session
if client_session is None:
client_session = aiohttp.ClientSession()
async def cleanup():
global client_session
if client_session:
await client_session.close()
def exit_handler():
print("Exiting the application. Initiating cleanup...")
loop = asyncio.get_event_loop()
loop.run_until_complete(cleanup())
atexit.register(exit_handler)
max_retries = int(os.environ.get("MAX_RETRIES", "5"))
retry_delay_multiplier = float(os.environ.get("RETRY_DELAY_MULTIPLIER", "2"))
print(f"max_retries: {max_retries}, retry_delay_multiplier: {retry_delay_multiplier}")
import time
async def async_request_with_retry(
method, url, disable_timeout=False, token=None, **kwargs
):
global client_session
await ensure_client_session()
retry_delay = 1 # Start with 1 second delay
initial_timeout = 5 # 5 seconds timeout for the initial connection
start_time = time.time()
for attempt in range(max_retries):
try:
if not disable_timeout:
timeout = ClientTimeout(total=None, connect=initial_timeout)
kwargs["timeout"] = timeout
if token is not None:
if "headers" not in kwargs:
kwargs["headers"] = {}
kwargs["headers"]["Authorization"] = f"Bearer {token}"
request_start = time.time()
async with client_session.request(method, url, **kwargs) as response:
request_end = time.time()
# logger.info(f"Request attempt {attempt + 1} took {request_end - request_start:.2f} seconds")
if response.status != 200:
error_body = await response.text()
# logger.error(f"Request failed with status {response.status} and body {error_body}")
# raise Exception(f"Request failed with status {response.status}")
response.raise_for_status()
if method.upper() == "GET":
await response.read()
total_time = time.time() - start_time
# logger.info(f"Request succeeded after {total_time:.2f} seconds (attempt {attempt + 1}/{max_retries})")
return response
except asyncio.TimeoutError:
logger.warning(
f"Request timed out after {initial_timeout} seconds (attempt {attempt + 1}/{max_retries})"
)
except ClientError as e:
end_time = time.time()
logger.error(f"Request failed (attempt {attempt + 1}/{max_retries}): {e}")
logger.error(
f"Time taken for failed attempt: {end_time - request_start:.2f} seconds"
)
logger.error(f"Total time elapsed: {end_time - start_time:.2f} seconds")
# Log the response body for ClientError as well
if hasattr(e, "response") and e.response is not None:
error_body = await e.response.text()
logger.error(f"Error response body: {error_body}")
if attempt == max_retries - 1:
logger.error(f"Request failed after {max_retries} attempts: {e}")
raise
await asyncio.sleep(retry_delay)
retry_delay *= retry_delay_multiplier
total_time = time.time() - start_time
raise Exception(
f"Request failed after {max_retries} attempts and {total_time:.2f} seconds"
)
from logging import basicConfig, getLogger
# Check for an environment variable to enable/disable Logfire
use_logfire = os.environ.get("USE_LOGFIRE", "false").lower() == "true"
if use_logfire:
try:
import logfire
logfire.configure(send_to_logfire="if-token-present")
logger = logfire
except ImportError:
print("Logfire not installed or disabled. Using standard Python logger.")
use_logfire = False
if not use_logfire:
# Use a standard Python logger when Logfire is disabled or not available
logger = getLogger("comfy-deploy")
basicConfig(level="INFO") # You can adjust the logging level as needed
def log(level, message, **kwargs):
if use_logfire:
getattr(logger, level)(message, **kwargs)
else:
getattr(logger, level)(f"{message} {kwargs}")
# For a span, you might need to create a context manager
from contextlib import contextmanager
@contextmanager
def log_span(name):
if use_logfire:
with logger.span(name):
yield
else:
yield
# logger.info(f"Start: {name}")
# yield
# logger.info(f"End: {name}")
from globals import (
StreamingPrompt,
Status,
sockets,
SimplePrompt,
streaming_prompt_metadata,
prompt_metadata,
)
class EventEmitter:
def __init__(self):
self.listeners = {}
def on(self, event, listener):
if event not in self.listeners:
self.listeners[event] = []
self.listeners[event].append(listener)
def off(self, event, listener):
if event in self.listeners:
self.listeners[event].remove(listener)
if not self.listeners[event]:
del self.listeners[event]
def emit(self, event, *args, **kwargs):
if event in self.listeners:
for listener in self.listeners[event]:
listener(*args, **kwargs)
# Create a global event emitter instance
event_emitter = EventEmitter()
api = None
api_task = None
cd_enable_log = os.environ.get("CD_ENABLE_LOG", "false").lower() == "true"
cd_enable_run_log = os.environ.get("CD_ENABLE_RUN_LOG", "false").lower() == "true"
bypass_upload = os.environ.get("CD_BYPASS_UPLOAD", "false").lower() == "true"
logger.info(f"CD_BYPASS_UPLOAD {bypass_upload}")
create_native_run_endpoint = None
status_endpoint = None
file_upload_endpoint = None
def clear_current_prompt(sid):
prompt_server = server.PromptServer.instance
to_delete = list(
streaming_prompt_metadata[sid].running_prompt_ids
) # Convert set to list
logger.info(f"clearing out prompt: {to_delete}")
for id_to_delete in to_delete:
delete_func = lambda a: a[1] == id_to_delete
prompt_server.prompt_queue.delete_queue_item(delete_func)
logger.info(
f"deleted prompt: {id_to_delete}, remaining tasks: {prompt_server.prompt_queue.get_tasks_remaining()}"
)
streaming_prompt_metadata[sid].running_prompt_ids.clear()
def post_prompt(json_data):
prompt_server = server.PromptServer.instance
json_data = prompt_server.trigger_on_prompt(json_data)
if "number" in json_data:
number = float(json_data["number"])
else:
number = prompt_server.number
if "front" in json_data:
if json_data["front"]:
number = -number
prompt_server.number += 1
if "prompt" in json_data:
prompt = json_data["prompt"]
valid = execution.validate_prompt(prompt)
extra_data = {}
if "extra_data" in json_data:
extra_data = json_data["extra_data"]
if "client_id" in json_data:
extra_data["client_id"] = json_data["client_id"]
if valid[0]:
# if the prompt id is provided
prompt_id = json_data.get("prompt_id") or str(uuid.uuid4())
outputs_to_execute = valid[2]
prompt_server.prompt_queue.put(
(number, prompt_id, prompt, extra_data, outputs_to_execute)
)
response = {
"prompt_id": prompt_id,
"number": number,
"node_errors": valid[3],
}
return response
else:
logger.info("invalid prompt:", valid[1])
return {"error": valid[1], "node_errors": valid[3]}
else:
return {"error": "no prompt", "node_errors": []}
def randomSeed(num_digits=15):
range_start = 10 ** (num_digits - 1)
range_end = (10**num_digits) - 1
return random.randint(range_start, range_end)
def apply_random_seed_to_workflow(workflow_api):
"""
Applies a random seed to each element in the workflow_api that has a 'seed' input.
Args:
workflow_api (dict): The workflow API dictionary to modify.
"""
for key in workflow_api:
if "inputs" in workflow_api[key]:
if "seed" in workflow_api[key]["inputs"]:
if isinstance(workflow_api[key]["inputs"]["seed"], list):
continue
if workflow_api[key]["class_type"] == "PromptExpansion":
workflow_api[key]["inputs"]["seed"] = randomSeed(8)
logger.info(
f"Applied random seed {workflow_api[key]['inputs']['seed']} to PromptExpansion"
)
continue
workflow_api[key]["inputs"]["seed"] = randomSeed()
logger.info(
f"Applied random seed {workflow_api[key]['inputs']['seed']} to {workflow_api[key]['class_type']}"
)
if "noise_seed" in workflow_api[key]["inputs"]:
if workflow_api[key]["class_type"] == "RandomNoise":
workflow_api[key]["inputs"]["noise_seed"] = randomSeed()
logger.info(
f"Applied random noise_seed {workflow_api[key]['inputs']['noise_seed']} to RandomNoise"
)
continue
if workflow_api[key]["class_type"] == "KSamplerAdvanced":
workflow_api[key]["inputs"]["noise_seed"] = randomSeed()
logger.info(
f"Applied random noise_seed {workflow_api[key]['inputs']['noise_seed']} to KSamplerAdvanced"
)
continue
if workflow_api[key]["class_type"] == "SamplerCustom":
workflow_api[key]["inputs"]["noise_seed"] = randomSeed()
logger.info(
f"Applied random noise_seed {workflow_api[key]['inputs']['noise_seed']} to SamplerCustom"
)
continue
def apply_inputs_to_workflow(workflow_api: Any, inputs: Any, sid: str = None):
# Loop through each of the inputs and replace them
for key, value in workflow_api.items():
if "inputs" in value:
# Support websocket
if sid is not None:
if value["class_type"] == "ComfyDeployWebscoketImageOutput":
value["inputs"]["client_id"] = sid
if value["class_type"] == "ComfyDeployWebscoketImageInput":
value["inputs"]["client_id"] = sid
if (
"input_id" in value["inputs"]
and inputs is not None
and value["inputs"]["input_id"] in inputs
):
new_value = inputs[value["inputs"]["input_id"]]
# Lets skip it if its an image
if isinstance(new_value, Image.Image):
continue
# Backward compactibility
value["inputs"]["input_id"] = new_value
# Fix for external text default value
if (
value["class_type"] == "ComfyUIDeployExternalText"
or value["class_type"] == "ComfyUIDeployExternalTextAny"
):
value["inputs"]["default_value"] = new_value
if value["class_type"] == "ComfyUIDeployExternalCheckpoint":
value["inputs"]["default_value"] = new_value
if value["class_type"] == "ComfyUIDeployExternalImageBatch":
value["inputs"]["images"] = new_value
if value["class_type"] == "ComfyUIDeployExternalLora":
value["inputs"]["lora_url"] = new_value
if value["class_type"] == "ComfyUIDeployExternalSlider":
value["inputs"]["default_value"] = new_value
if value["class_type"] == "ComfyUIDeployExternalBoolean":
value["inputs"]["default_value"] = new_value
if value["class_type"] == "ComfyUIDeployExternalFaceModel":
value["inputs"]["face_model_url"] = new_value
def send_prompt(sid: str, inputs: StreamingPrompt):
# workflow_api = inputs.workflow_api
workflow_api = copy.deepcopy(inputs.workflow_api)
workflow = copy.deepcopy(inputs.workflow)
# Random seed
apply_random_seed_to_workflow(workflow_api)
logger.info("getting inputs", inputs.inputs)
apply_inputs_to_workflow(workflow_api, inputs.inputs, sid=sid)
logger.info(workflow_api)
prompt_id = str(uuid.uuid4())
prompt = {
"prompt": workflow_api,
"client_id": sid, # "comfy_deploy_instance", #api.client_id
"prompt_id": prompt_id,
"extra_data": {"extra_pnginfo": {"workflow": workflow}},
}
try:
res = post_prompt(prompt)
inputs.running_prompt_ids.add(prompt_id)
prompt_metadata[prompt_id] = SimplePrompt(
status_endpoint=inputs.status_endpoint,
file_upload_endpoint=inputs.file_upload_endpoint,
workflow_api=workflow_api,
is_realtime=True,
)
except Exception as e:
error_type = type(e).__name__
stack_trace_short = traceback.format_exc().strip().split("\n")[-2]
stack_trace = traceback.format_exc().strip()
logger.info(f"error: {error_type}, {e}")
logger.info(f"stack trace: {stack_trace_short}")
# # Add custom logic here
# if 'prompt_id' in response:
# prompt_id = response['prompt_id']
# if prompt_id in prompt_metadata:
# metadata = prompt_metadata[prompt_id]
# # Add additional information to the response
# response['status_endpoint'] = metadata.status_endpoint
# response['file_upload_endpoint'] = metadata.file_upload_endpoint
@server.PromptServer.instance.routes.post("/comfyui-deploy/run")
async def comfy_deploy_run(request):
# Extract the bearer token from the Authorization header
data = await request.json()
client_id = data.get("client_id")
# We proxy the request to Comfy Deploy, this is a native run
if "is_native_run" in data:
async with aiohttp.ClientSession() as session:
# pprint(data)
# headers = request.headers.copy()
# headers['Content-Type'] = 'application/json'
async with session.post(
data.get("native_run_api_endpoint"),
json=data,
headers={
"Content-Type": "application/json",
"Authorization": request.headers.get("Authorization"),
},
) as response:
data = await response.json()
print(data)
if "cd_token" in data:
token = data["cd_token"]
else:
auth_header = request.headers.get("Authorization")
token = None
if auth_header:
parts = auth_header.split()
if len(parts) == 2 and parts[0].lower() == "bearer":
token = parts[1]
# In older version, we use workflow_api, but this has inputs already swapped in nextjs frontend, which is tricky
workflow_api = data.get("workflow_api_raw")
# The prompt id generated from comfy deploy, can be None
prompt_id = data.get("prompt_id")
inputs = data.get("inputs")
gpu_event_id = data.get("gpu_event_id", None)
workflow = data.get("workflow")
# Now it handles directly in here
apply_random_seed_to_workflow(workflow_api)
apply_inputs_to_workflow(workflow_api, inputs)
prompt = {
"prompt": workflow_api,
"client_id": "comfy_deploy_instance" if client_id is None else client_id,
"prompt_id": prompt_id,
"extra_data": {"extra_pnginfo": {"workflow": workflow}},
}
prompt_metadata[prompt_id] = SimplePrompt(
status_endpoint=data.get("status_endpoint"),
file_upload_endpoint=data.get("file_upload_endpoint"),
workflow_api=workflow_api,
token=token,
gpu_event_id=gpu_event_id,
)
try:
res = post_prompt(prompt)
except Exception as e:
error_type = type(e).__name__
stack_trace_short = traceback.format_exc().strip().split("\n")[-2]
stack_trace = traceback.format_exc().strip()
logger.info(f"error: {error_type}, {e}")
logger.info(f"stack trace: {stack_trace_short}")
await update_run_with_output(
prompt_id,
{"error": {"error_type": error_type, "stack_trace": stack_trace}},
gpu_event_id=gpu_event_id,
)
# When there are critical errors, the prompt is actually not run
await update_run(prompt_id, Status.FAILED)
return web.Response(
status=500, reason=f"{error_type}: {e}, {stack_trace_short}"
)
status = 200
if (
"node_errors" in res
and res["node_errors"] is not None
and len(res["node_errors"]) > 0
):
# Even tho there are node_errors it can still be run
status = 400
await update_run_with_output(
prompt_id, {"error": {**res}}, gpu_event_id=gpu_event_id
)
# When there are critical errors, the prompt is actually not run
if "error" in res:
await update_run(prompt_id, Status.FAILED)
return web.json_response(res, status=status)
async def stream_prompt(data, token):
# In older version, we use workflow_api, but this has inputs already swapped in nextjs frontend, which is tricky
workflow_api = data.get("workflow_api_raw")
# The prompt id generated from comfy deploy, can be None
prompt_id = data.get("prompt_id")
inputs = data.get("inputs")
workflow = data.get("workflow")
gpu_event_id = data.get("gpu_event_id", None)
# Now it handles directly in here
apply_random_seed_to_workflow(workflow_api)
apply_inputs_to_workflow(workflow_api, inputs)
prompt = {
"prompt": workflow_api,
"client_id": "comfy_deploy_instance", # api.client_id
"prompt_id": prompt_id,
"extra_data": {"extra_pnginfo": {"workflow": workflow}},
}
prompt_metadata[prompt_id] = SimplePrompt(
status_endpoint=data.get("status_endpoint"),
file_upload_endpoint=data.get("file_upload_endpoint"),
workflow_api=workflow_api,
token=token,
gpu_event_id=gpu_event_id,
)
# log('info', "Begin prompt", prompt=prompt)
try:
res = post_prompt(prompt)
except Exception as e:
error_type = type(e).__name__
stack_trace_short = traceback.format_exc().strip().split("\n")[-2]
stack_trace = traceback.format_exc().strip()
logger.info(f"error: {error_type}, {e}")
logger.info(f"stack trace: {stack_trace_short}")
await update_run_with_output(
prompt_id, {"error": {"error_type": error_type, "stack_trace": stack_trace}}
)
# When there are critical errors, the prompt is actually not run
await update_run(prompt_id, Status.FAILED)
# return web.Response(status=500, reason=f"{error_type}: {e}, {stack_trace_short}")
# raise Exception("Prompt failed")
status = 200
if (
"node_errors" in res
and res["node_errors"] is not None
and len(res["node_errors"]) > 0
):
# Even tho there are node_errors it can still be run
status = 400
await update_run_with_output(prompt_id, {"error": {**res}})
# When there are critical errors, the prompt is actually not run
if "error" in res:
await update_run(prompt_id, Status.FAILED)
# raise Exception("Prompt failed")
return res
# return web.json_response(res, status=status)
comfy_message_queues: Dict[str, asyncio.Queue] = {}
@server.PromptServer.instance.routes.post("/comfyui-deploy/run/streaming")
async def stream_response(request):
response = web.StreamResponse(
status=200, reason="OK", headers={"Content-Type": "text/event-stream"}
)
await response.prepare(request)
# Extract the bearer token from the Authorization header
auth_header = request.headers.get("Authorization")
token = None
if auth_header:
parts = auth_header.split()
if len(parts) == 2 and parts[0].lower() == "bearer":
token = parts[1]
pending = True
data = await request.json()
prompt_id = data.get("prompt_id")
comfy_message_queues[prompt_id] = asyncio.Queue()
with log_span("Streaming Run"):
log("info", "Streaming prompt")
try:
result = await stream_prompt(data=data, token=token)
await response.write(
f"event: event_update\ndata: {json.dumps(result)}\n\n".encode("utf-8")
)
# await response.write(.encode('utf-8'))
await response.drain() # Ensure the buffer is flushed
while pending:
if prompt_id in comfy_message_queues:
if not comfy_message_queues[prompt_id].empty():
data = await comfy_message_queues[prompt_id].get()
# log('info', data["event"], data=json.dumps(data))
# logger.info("listener", data)
await response.write(
f"event: event_update\ndata: {json.dumps(data)}\n\n".encode(
"utf-8"
)
)
await response.drain() # Ensure the buffer is flushed
if data["event"] == "status":
if data["data"]["status"] in (
Status.FAILED.value,
Status.SUCCESS.value,
):
pending = False
await asyncio.sleep(0.1) # Adjust the sleep duration as needed
except asyncio.CancelledError:
log("info", "Streaming was cancelled")
raise
except Exception as e:
log("error", "Streaming error", error=e)
finally:
# event_emitter.off("send_json", task)
await response.write_eof()
comfy_message_queues.pop(prompt_id, None)
return response
def get_comfyui_path_from_file_path(file_path):
file_path_parts = file_path.split("\\")
if file_path_parts[0] == "input":
logger.info("matching input")
file_path = os.path.join(
folder_paths.get_directory_by_type("input"), *file_path_parts[1:]
)
elif file_path_parts[0] == "models":
logger.info("matching models")
file_path = folder_paths.get_full_path(
file_path_parts[1], os.path.join(*file_path_parts[2:])
)
logger.info(file_path)
return file_path
# Form ComfyUI Manager
async def compute_sha256_checksum(filepath):
logger.info("computing sha256 checksum")
chunk_size = 1024 * 256 # Example: 256KB
filepath = get_comfyui_path_from_file_path(filepath)
"""Compute the SHA256 checksum of a file, in chunks, asynchronously"""
sha256 = hashlib.sha256()
async with aiofiles.open(filepath, "rb") as f:
while True:
chunk = await f.read(chunk_size)
if not chunk:
break
sha256.update(chunk)
return sha256.hexdigest()
@server.PromptServer.instance.routes.get("/comfyui-deploy/models")
async def get_installed_models(request):
# Directly return the list of paths as JSON
new_dict = {}
for key, value in folder_paths.folder_names_and_paths.items():
# Convert set to list for JSON compatibility
# for path in value[0]:
file_list = folder_paths.get_filename_list(key)
value_json_compatible = (value[0], list(value[1]), file_list)
new_dict[key] = value_json_compatible
# logger.info(new_dict)
return web.json_response(new_dict)
# This is start uploading the files to Comfy Deploy
@server.PromptServer.instance.routes.post("/comfyui-deploy/upload-file")
async def upload_file_endpoint(request):
data = await request.json()
file_path = data.get("file_path")
logger.info("Original file path", file_path)
file_path = get_comfyui_path_from_file_path(file_path)
# return web.json_response({
# "error": f"File not uploaded"
# }, status=500)
token = data.get("token")
get_url = data.get("url")
try:
base = folder_paths.base_path
file_path = os.path.join(base, file_path)
if os.path.exists(file_path):
file_size = os.path.getsize(file_path)
file_extension = os.path.splitext(file_path)[1]
if file_extension in [".jpg", ".jpeg"]:
file_type = "image/jpeg"
elif file_extension == ".png":
file_type = "image/png"
elif file_extension == ".webp":
file_type = "image/webp"
else:
file_type = (
"application/octet-stream" # Default to binary file type if unknown
)
else:
return web.json_response(
{"error": f"File not found: {file_path}"}, status=404
)
except Exception as e:
return web.json_response({"error": str(e)}, status=500)
if get_url:
try:
headers = {"Authorization": f"Bearer {token}"}
params = {"file_size": file_size, "type": file_type}
response = await async_request_with_retry(
"GET", get_url, params=params, headers=headers
)
if response.status == 200:
content = await response.json()
upload_url = content["upload_url"]
with open(file_path, "rb") as f:
headers = {
"Content-Type": file_type,
# "Content-Length": str(file_size)
}
if content.get("include_acl") is True:
headers["x-amz-acl"] = "public-read"
upload_response = await async_request_with_retry(
"PUT", upload_url, data=f, headers=headers
)
if upload_response.status == 200:
return web.json_response(
{
"message": "File uploaded successfully",
"download_url": content["download_url"],
}
)
else:
return web.json_response(
{
"error": f"Failed to upload file to {upload_url}. Status code: {upload_response.status}"
},
status=upload_response.status,
)
else:
return web.json_response(
{
"error": f"Failed to fetch data from {get_url}. Status code: {response.status}"
},
status=response.status,
)
except Exception as e:
return web.json_response(
{
"error": f"An error occurred while fetching data from {get_url}: {str(e)}"
},
status=500,
)
return web.json_response({"error": f"File not uploaded"}, status=500)
script_dir = os.path.dirname(os.path.abspath(__file__))
# Assuming the cache file is stored in the same directory as this script
CACHE_FILE_PATH = script_dir + "/file-hash-cache.json"
# Global in-memory cache
file_hash_cache = {}
# Load cache from disk at startup
def load_cache():
global file_hash_cache
try:
with open(CACHE_FILE_PATH, "r") as cache_file:
file_hash_cache = json.load(cache_file)
except (FileNotFoundError, json.JSONDecodeError):
file_hash_cache = {}
# Save cache to disk
def save_cache():
with open(CACHE_FILE_PATH, "w") as cache_file:
json.dump(file_hash_cache, cache_file)
# Initialize cache on application start
load_cache()
@server.PromptServer.instance.routes.get("/comfyui-deploy/get-file-hash")
async def get_file_hash(request):
file_path = request.rel_url.query.get("file_path", "")
if not file_path:
return web.json_response({"error": "file_path is required"}, status=400)
try:
base = folder_paths.base_path
full_file_path = os.path.join(base, file_path)
# Check if the file hash is in the cache
if full_file_path in file_hash_cache:
file_hash = file_hash_cache[full_file_path]
else:
start_time = time.time()
file_hash = await compute_sha256_checksum(full_file_path)
end_time = time.time()
elapsed_time = end_time - start_time
logger.info(f"Cache miss -> Execution time: {elapsed_time} seconds")
# Update the in-memory cache
file_hash_cache[full_file_path] = file_hash
save_cache()
return web.json_response({"file_hash": file_hash})
except Exception as e:
return web.json_response({"error": str(e)}, status=500)
async def update_realtime_run_status(
realtime_id: str,
status_endpoint: str,
status: Status,
gpu_event_id: str | None = None,
):
body = {
"run_id": realtime_id,
"status": status.value,
"gpu_event_id": gpu_event_id,
}
if status_endpoint is None:
return
# requests.post(status_endpoint, json=body)
await async_request_with_retry("POST", status_endpoint, json=body)
@server.PromptServer.instance.routes.get("/comfyui-deploy/ws")
async def websocket_handler(request):
ws = web.WebSocketResponse()
await ws.prepare(request)
sid = request.rel_url.query.get("clientId", "")
if sid:
# Reusing existing session, remove old
sockets.pop(sid, None)
else:
sid = uuid.uuid4().hex
sockets[sid] = ws
auth_token = request.rel_url.query.get("token", None)
get_workflow_endpoint_url = request.rel_url.query.get("workflow_endpoint", None)
realtime_id = request.rel_url.query.get("realtime_id", None)
status_endpoint = request.rel_url.query.get("status_endpoint", None)
if auth_token is not None and get_workflow_endpoint_url is not None:
headers = {"Authorization": f"Bearer {auth_token}"}
response = await async_request_with_retry(
"GET", get_workflow_endpoint_url, headers=headers
)
if response.status == 200:
workflow = await response.json()
logger.info(f"Loaded workflow version ${workflow['version']}")
streaming_prompt_metadata[sid] = StreamingPrompt(
workflow_api=workflow["workflow_api"],
auth_token=auth_token,
inputs={},
status_endpoint=status_endpoint,
file_upload_endpoint=request.rel_url.query.get(
"file_upload_endpoint", None
),
workflow=workflow["workflow"],
)
await update_realtime_run_status(
realtime_id, status_endpoint, Status.RUNNING
)
# await send("workflow_api", workflow_api, sid)
else:
error_message = await response.text()
logger.info(
f"Failed to fetch workflow endpoint. Status: {response.status}, Error: {error_message}"
)
# await send("error", {"message": error_message}, sid)
try:
# Send initial state to the new client
await send("status", {"sid": sid}, sid)
# Make sure when its connected via client, the full log is not being sent
if cd_enable_log and get_workflow_endpoint_url is None:
await send_first_time_log(sid)
async for msg in ws:
if msg.type == aiohttp.WSMsgType.TEXT:
try:
data = json.loads(msg.data)
logger.info(data)
event_type = data.get("event")
if event_type == "input":
logger.info(f"Got input: ${data.get('inputs')}")
input = data.get("inputs")
streaming_prompt_metadata[sid].inputs.update(input)
elif event_type == "queue_prompt":
clear_current_prompt(sid)
send_prompt(sid, streaming_prompt_metadata[sid])
else:
# Handle other event types
pass
except json.JSONDecodeError:
logger.info("Failed to decode JSON from message")
if msg.type == aiohttp.WSMsgType.BINARY:
data = msg.data
(event_type,) = struct.unpack("<I", data[:4])
if event_type == 0: # Image input
(image_type_code,) = struct.unpack("<I", data[4:8])
input_id_bytes = data[
8:32
] # Extract the next 24 bytes for the input ID
input_id = input_id_bytes.decode(
"ascii"
).strip() # Decode the input ID from ASCII
logger.info(event_type)
logger.info(image_type_code)
logger.info(input_id)
image_data = data[32:] # The rest is the image data
if image_type_code == 1:
image_type = "JPEG"
elif image_type_code == 2:
image_type = "PNG"
elif image_type_code == 3:
image_type = "WEBP"
else:
logger.info(f"Unknown image type code: ${image_type_code}")
return
image = Image.open(BytesIO(image_data))
# Check if the input ID already exists and replace the input with the new one
if input_id in streaming_prompt_metadata[sid].inputs:
# If the input exists, we assume it's an image and attempt to close it to free resources