forked from metaopt/torchopt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize.py
78 lines (61 loc) · 2.36 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright 2022 MetaOPT Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchviz
import torchopt
class Net(nn.Module):
def __init__(self, dim):
super().__init__()
self.fc = nn.Linear(dim, 1)
def forward(self, x, meta_param):
return self.fc(x) + meta_param
def draw_torchviz():
net = Net(dim).cuda()
optimizer = torchopt.MetaAdam(net, lr=1e-3, use_accelerated_op=False)
meta_param = torch.tensor(1.0, requires_grad=True)
xs = torch.ones(batch_size, dim).cuda()
pred = net(xs, meta_param)
loss = F.mse_loss(pred, torch.ones_like(pred))
optimizer.step(loss)
pred = net(xs, meta_param)
loss = F.mse_loss(pred, torch.ones_like(pred))
# draw computation graph
torchviz.make_dot(loss).render('torchviz_graph', format='svg')
def draw_torchopt():
net = Net(dim).cuda()
optimizer = torchopt.MetaAdam(net, lr=1e-3, use_accelerated_op=True)
meta_param = torch.tensor(1.0, requires_grad=True)
xs = torch.ones(batch_size, dim).cuda()
pred = net(xs, meta_param)
loss = F.mse_loss(pred, torch.ones_like(pred))
# set enable_visual
net_state_0 = torchopt.extract_state_dict(net, enable_visual=True, visual_prefix='step0.')
optimizer.step(loss)
# set enable_visual
net_state_1 = torchopt.extract_state_dict(net, enable_visual=True, visual_prefix='step1.')
pred = net(xs, meta_param)
loss = F.mse_loss(pred, torch.ones_like(pred))
# draw computation graph
torchopt.visual.make_dot(loss, [net_state_0, net_state_1, {meta_param: 'meta_param'}]).render(
'torchopt_graph',
format='svg',
)
if __name__ == '__main__':
dim = 5
batch_size = 2
draw_torchviz()
draw_torchopt()