-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
1104 lines (889 loc) · 52 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[10pt,a4paper]{amsart}
\input{preamble}
\begin{document}
\title{Interpolation for Logics of Spacetime}
\author{Amirhossein Akbar Tabatabai}
\author{Majid Alizadeh}
\author{Alireza Mahmoudian}
\date{\today}
\begin{abstract}
\input{abstract}
\end{abstract}
\maketitle
\keywords{Intuitionistic Logic, Cut-elimination, Interpolation}
\subjclass{03B20, 03F05, 03C40}
\section{Introduction}
\input{introduction}
\subsection{Notation}
In the following, a formula of language $\mathcal{L}$ is a free construction of operators $\bot$, $\top$, $\nabla$, $\vee$, $\wedge$ and $\rightarrow$, which have arities $0$, $0$, $1$, $2$, $2$ and $2$, respectively, over a countable set of atoms. We might also use the shorthand $\Box A$ for $\top \rightarrow A$.
$\Gamma$, $\Sigma$ and $\Pi$ are names for finite multi-sets of formulas, $\Delta$ for a sub-singleton of some formula, $A$, $B$ and $C$ for formulas, $p$ for atoms and $n$, $l$, $r$ and $k$ for natural numbers. We denote by $P$ the set of all atoms, and by $P(A)$ the set of those that occur in the formula $A$.
We will write $A$ for the singleton $\{A\}$ where ever it is inferable from the context.
``$,$'' is the multi-set union. We will also use the following short-hands.
\begin{flushleft}
$ A^1 = \{ A \} $ \\
$ A^{n+1} = A^n, A $ \\
$ \Gamma^1 = \Gamma $ \\
$ \Gamma^{n+1} = \Gamma^n, \Gamma $ \\
$ \nabla^1 A = \nabla A $ \\
$ \nabla^{n+1} A = \nabla (\nabla^n A) $ \\
$ \nabla^n \Gamma = \{ \nabla^n A \mid A \in \Gamma \} $ \\
$ P(\Gamma) = \bigcup_{A \in \Gamma} P(A) $
\end{flushleft}
A sequent $\Gamma \Rightarrow \Delta$ is a binary relation between $\Gamma$, a multi-set of formulas called \emph{the antecedent} or \emph{the left-side}, and $\Delta$, a sub-singleton of some formula called \emph{the succedent} or \emph{the right-side}.
We will construct trees, called \emph{proof-trees}, using a set of recursive rules, called a \emph{deductive system}, or simply \emph{system}.
A rule $R$ is expressed as a relation between a set of $n$ sequents $\{ \Gamma_i \Rightarrow \Delta_i \mid 1 \leq i \leq n \}$ called \emph{premises} and a sequent $\Gamma \Rightarrow \Delta$ called \emph{conclusion}, and is written as follows.
\begin{prooftree}
\AXC{$\Gamma_1 \Rightarrow \Delta_1$}
\AXC{$\dots$}
\AXC{$\Gamma_n \Rightarrow \Delta_n$}
\RightLabel{$R$}
\TIC{$\Gamma \Rightarrow \Delta$}
\end{prooftree}
A rule with $n = 0$ is called an \emph{axiom}. We will designate a specific formula in the conclusion of some rules, called \emph{the principal formula} of that rule, which will be indicated by writing it \uwave{underlined}.
A proof-tree in a system is made up of instances of rules of that system. So in a system with the rule $R$, we can construct a proof-tree with root $\Gamma \Rightarrow \Delta$, if we have already constructed $n$ proof-trees with roots $\Gamma_i \Rightarrow \Delta_i$ for all $1 \leq i \leq n$.
When a proof-tree, with $\Gamma \Rightarrow \Delta$ as root, is constructed using a system $S$, we say that $S$ proves $\Gamma \Rightarrow \Delta$, and write it as $S \vdash \Gamma \Rightarrow \Delta$.
We will name proof-trees by $\D$, $\D'$ and so on, unless otherwise stated. We will name subtrees of $\D$ by $\D_0$, $\D_1$ and so on. We will frequently use induction to prove existence of some proof-tree, assuming existence of some other proof-tree $\D$. In such situations we will use notation $IH(\D)$ to denote the proof-tree that we will get from induction hypothesis.
We will write $S \vdash_h \Gamma \Rightarrow \Delta$ to indicate the existence of a proof-tree of height $h$ for $\Gamma \Rightarrow \Delta$ in system $S$. We will also write $h(\D)$ for the height of a proof-tree $\D$.
The set of all sequents provable by a system is called \emph{the logic} of that system. We will write the name for a logic in boldface to distinguish it from a system.
We write $S \vdash^r A$ when we want to indicate that a system $S$ proves a formula $A$, with a proof-tree of rank $r$ (defined in the next section).
\section{Sequent calculi for the logic of spacetime}
In this section, will define the systems $\st$ (defined as $\istl(N)$ in \cite{amir}), $\stt$ and $\gstt$, and show that these systems are equivalent.
\begin{dfn}[$cut$, Rank]\label{dfn:cut} \quad
\begin{center}
\begin{prooftree}
\AXC{$ \Gamma \Rightarrow A$}
\AXC{$\Sigma, A \Rightarrow \Delta$}
\RightLabel{$cut$}
\BIC{$\Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
\end{center}
$A$ is called \emph{the cut-formula} of a $cut$ or $\nabla cut$ instance.
\emph{Rank} of a formula $A$ is defined as
\[ \rho(A) = \begin{cases}
1 & \quad ; A \in P \cup \{ \bot, \top \} \\
\rho(B) & \quad ; A = \nabla B \\
max(\rho(B), \rho(C)) + 1 & \quad ; A = B \circ C \quad (\circ \in \{ \land, \lor, \rightarrow \})
\end{cases} \]
Notice that $\nabla$ does not increase the rank of a formula.
We also define rank for rule instances and proof-trees as follows. Rank of an instance of the $cut$ rule with cut-formula $A$ is defined to be the rank of $A$. Rank of any other rule instance is $0$.
Rank of a proof-tree $\D$, written as $\rho(\D)$, is the maximum rank of all of its rule instances.
\end{dfn}
Define the sequent-style system $\st$ by the following rules.
\input{dfn/st}
In this part we will define the system $\stt$, which will be shown equivalent to $\st$. The two systems are very similar, except for the axioms, and the ruels $L \wedge$, $L \rightarrow$, and $Lw$. Notice that $Lc$ is not present in $\stt$, which is essential to out cut-elimimnation method.
\input{dfn/stt}
To show that $\st$ and $\stt$ are equivalent, we need to show the following lemmas.
\begin{lem}[$Id$]\label{lem:stt-id-form}
$\stt \vdash \Gamma, A \Rightarrow A$.
\end{lem}
\begin{proof}
By induction on the structure of $A$. Let $A$ have any of the following forms.
($p$) $Id$ proves $\Gamma, p \Rightarrow p$.
($\bot$) $L \bot$ proves $\Gamma, \bot \Rightarrow \bot$.
($\top$) $R \top$ proves $\Gamma, \top \Rightarrow \top$.
($B \wedge C$) By IH we have $\stt \vdash B \Rightarrow B$ and $\stt \vdash C \Rightarrow C$. By $Lw$ we have $\stt \vdash B, C \Rightarrow B$ and $\stt \vdash B, C \Rightarrow C$. By $R \wedge$ we have $\stt \vdash B, C \Rightarrow B \wedge C$. By $L \wedge$ we have $\stt \vdash B \wedge C \Rightarrow B \wedge C$.
\begin{prooftree}
\AXC{IH}
\noLine
\UIC{$\Gamma, B \Rightarrow B$}
\RightLabel{$Lw$}
\UIC{$\Gamma, B, C \Rightarrow B$}
\AXC{IH}
\noLine
\UIC{$\Gamma, C \Rightarrow C$}
\RightLabel{$Lw$}
\UIC{$\Gamma, B, C \Rightarrow C$}
\RightLabel{$R \wedge$}
\BIC{$\Gamma, B, C \Rightarrow B \wedge C$}
\RightLabel{$L \wedge$}
\UIC{$\Gamma, B \wedge C \Rightarrow B \wedge C$}
\end{prooftree}
($B \vee C$)
\begin{prooftree}
\AXC{IH}
\noLine
\UIC{$\Gamma, B \Rightarrow B$}
\RightLabel{$R \vee$}
\UIC{$\Gamma, B \Rightarrow B \vee C$}
\AXC{IH}
\noLine
\UIC{$\Gamma, C \Rightarrow C$}
\RightLabel{$R \vee$}
\UIC{$\Gamma, C \Rightarrow B \vee C$}
\RightLabel{$L \vee$}
\BIC{$\Gamma, B \vee C \Rightarrow B \vee C$}
\end{prooftree}
($B \rightarrow C$)
\begin{prooftree}
\AXC{IH} \noLine
\UIC{$\nabla \Gamma, \nabla (B \rightarrow C), B \Rightarrow B$}
\AXC{IH} \noLine
\UIC{$\nabla \Gamma, \nabla (B \rightarrow C), C \Rightarrow C$}
\RightLabel{$L \rightarrow$}
\BIC{$\nabla \Gamma, \nabla (B \rightarrow C), B \Rightarrow C$}
\RightLabel{$R \rightarrow$}
\UIC{$\Gamma, B \rightarrow C \Rightarrow B \rightarrow C$}
\end{prooftree}
($\nabla B$)
\begin{prooftree}
\AXC{IH} \noLine
\UIC{$B \Rightarrow B$}
\RightLabel{$N$}
\UIC{$\nabla B \Rightarrow \nabla B$}
\RightLabel{$Lw$}
\UIC{$\Gamma, \nabla B \Rightarrow \nabla B$}
\end{prooftree}
\end{proof}
\begin{lem}[Inversion]\label{lem:stt-inversion} \quad
\begin{enumerate}
\item If $\stt \vdash_h \Gamma, \nabla^n (A \wedge B) \Rightarrow \Delta$ then $\stt \vdash_h \Gamma, \nabla^n A, \nabla^n B \Rightarrow \Delta$.
\item If $\stt \vdash_h \Gamma, \nabla^n (A \vee B) \Rightarrow \Delta$ then $\stt \vdash_h \Gamma, \nabla^n A \Rightarrow \Delta$ and $\stt \vdash_h \Gamma, \nabla^n B \Rightarrow \Delta$.
\item If $\stt \vdash_h \Gamma \Rightarrow A \wedge B$ then $\stt \vdash_h \Gamma \Rightarrow A$ and $\stt \vdash_h \Gamma \Rightarrow B$.
\end{enumerate}
\end{lem}
\begin{proof}
We will use induction on the assumed proof-tree $\D$ for $\Gamma, \nabla^n (A \wedge B) \Rightarrow \Delta$, $\Gamma, \nabla^n (A \vee B) \Rightarrow \Delta$ and $\Gamma \Rightarrow A \wedge B$ for parts $1$, $2$ and $3$ of Lemma, repsectively, where it ends with a rule $R$. Notice that our construction does not increase the proof size.
Cases where $R$ is an axiom are trivial. In cases where $R$ is $L \wedge$, $L \vee$ and $R \wedge$ in parts $1$, $2$ and $3$, respectively, and $A \wedge B$ and $A \vee B$ are principal, which implies $n = 0$, the subtree(s) of $\D$ would prove the desired sequent. In all other cases just commute $R$ with $\IH(\D_0)$ (and $\IH(\D_1)$ if $R$ has two premises).
\end{proof}
\begin{thm}[$Lc$]\label{thm:stt-lc-elim} If $\stt \vdash_h \Gamma, A^2 \Rightarrow \Delta$ then $\stt \vdash_h \Gamma, A \Rightarrow \Delta$.
\end{thm}
\begin{proof}
By induction on the proof for $\Gamma, A^2 \Rightarrow \Delta$, which we call $\D$ and ends with rule $R$.
Cases for axioms are trivial. All cases where none of occurrences of $A$ are principal are handled by commuting $R$ with $\IH(\D_i)$. Now suppose $R$ is either of the following and $A$ is principal in $R$.
\begin{itemize}
\item[$(L \wedge)$] Let $A = A \wedge B$.
\begin{prooftree}
\AXC{$\D_0$} \noLine
\UIC{$\Gamma, A, B, A \wedge B \Rightarrow \Delta$}
\RightLabel{$L \wedge$}
\UIC{$\Gamma, (A \wedge B)^2 \Rightarrow \Delta$}
\end{prooftree}
Then by Lemma \ref{lem:stt-inversion} we have $\Gamma, A^2, B^2 \Rightarrow \Delta$. Using induction hypothesis twice, we would have $\Gamma, A, B \Rightarrow \Delta$. $L \wedge$ will result in the desired sequent.
\item[$(L \vee)$] Let $A = A \vee B$.
\begin{prooftree}
\AXC{$\D_0$} \noLine
\UIC{$ \Gamma, A, A \vee B \Rightarrow \Delta$}
\AXC{$\D_1$} \noLine
\UIC{$\Gamma, B, A \vee B \Rightarrow \Delta$}
\RightLabel{$L \vee$}
\BIC{$ \Gamma, (A \vee B)^2 \Rightarrow \Delta$}
\end{prooftree}
By Lemma \ref{lem:stt-inversion} for $\D_0$ and $\D_1$ we have $\Gamma, A^2 \Rightarrow \Delta$ and $\Gamma, B^2 \Rightarrow \Delta$. By induction hypothesis we have $\Gamma, A \Rightarrow \Delta$ and $\Gamma, B \Rightarrow \Delta$. By $L \vee$ we have the desired sequent.
\item[$(L \rightarrow)$] Let $A = \nabla (A \rightarrow B)$.
\begin{prooftree}
\AXC{$\D_0$} \noLine
\UIC{$\Gamma, (\nabla (A \rightarrow B))^2 \Rightarrow A$}
\AXC{$\D_1$} \noLine
\UIC{$\Gamma, B, (\nabla (A \rightarrow B))^2 \Rightarrow \Delta$}
\RightLabel{$L \rightarrow$}
\BIC{$\Gamma, (\nabla (A \rightarrow B))^2 \Rightarrow \Delta$}
\end{prooftree}
By induction hypothesis we have $\Gamma, \nabla (A \rightarrow B) \Rightarrow A$ and $\Gamma, B, \nabla (A \rightarrow B) \Rightarrow \Delta$. By $L \rightarrow$ we have the desired sequent.
\end{itemize}
\end{proof}
Now we are ready to show that $\stt$ is a contractino-free version of $\st$.
\begin{thm}\label{thm:stt-eq-st} $\stt \vdash \Gamma \Rightarrow \Delta$ iff $\st \vdash \Gamma \Rightarrow \Delta$.
\end{thm}
\begin{proof}
($\Rightarrow$) All the rules in $\stt$ are also in $\st$, except for $L \wedge$ and $L \rightarrow$, which can be easily imitated in $\st$ using the same logical rules and structural rules in $\st$. \\
($\Leftarrow$) All the rules in $\st$ are also in $\stt$, except for $Lc$, which can be imitated in $\stt$ using Theorem \ref{thm:stt-lc-elim}.
\end{proof}
\begin{thm}\label{thm:sttp-eq-stp}
$\stt^+ \vdash \Gamma \Rightarrow \Delta$ iff $\st^+ \vdash \Gamma \Rightarrow \Delta$.
\end{thm}
\begin{proof}
Similar to \ref{thm:stt-eq-st}.\\
($\Rightarrow$) By induction on the structure of $\D$, the proof-tree for $\Gamma \Rightarrow \Delta$ in $\stt^+$, which ends with rule $R$.
For the cases where $R$ is also a rule in $\st^+$, just apply $R$ on the proof-trees that we get from induction hypothesis for the sub-tree(s) of $\D$. If $R$ is $L \wedge$, we must use both $L \wedge_1$ and $L \wedge_2$, and $Lc$ in $\st^+$. If $R$ is $L \rightarrow$, we must use $Lw$ to prepare the context before using $L \rightarrow$ in $\st^+$.\\
($\Leftarrow$) Similar to the other direction, except that in the case for $Lc$ we must use Theorem \ref{thm:stt-lc-elim}.
\end{proof}
In this part we will introduce the system $\gstt$, which is essential for our cut-elimimnation method. The rules in $\gstt$ are the generalized versions of the rules in $\stt$, in such a way that arbitrary number of $\nabla$'s commutes with the logical operators on the antecedents of the sequents.
\begin{dfn}[$\nabla cut$, Rank]
The following rule generalizes the $cut$ rule.
\begin{center}
\begin{prooftree}
\AXC{$ \Gamma \Rightarrow A$}
\AXC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{$\nabla cut$}
\BIC{$\nabla^n \Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
\end{center}
The notion of \emph{rank} for $\nabla cut$ is defined similar to Definition \ref{dfn:cut}.
\end{dfn}
\input{dfn/gstt}
Now we are going to show that $\stt^+$ and $\gstt^+$ are equivalent, in the presense of their respecting cut rules. First, we need to show that the generalized rules in $\gstt^+$ can be immitated in $\stt^+$.
\begin{lem}\label{lem:l-nabla-dist} \quad
\begin{enumerate}
\item $\stt^+ \vdash \nabla^n (A \vee B) \Rightarrow \nabla^n A \vee \nabla^n B$.
\item $\stt^+ \vdash \nabla^n (A \wedge B) \Rightarrow \nabla^n A \wedge \nabla^n B$.
\item $\stt^+ \vdash \nabla^n (A \rightarrow B) \Rightarrow \nabla^n A \rightarrow \nabla^n B$.
\end{enumerate}
\end{lem}
\begin{proof}
\begin{enumerate}
\item First, observe that
\begin{prooftree}
\AXC{}
\RightLabel{$Ta$}
\UIC{$\nabla (\top \rightarrow C) \Rightarrow \top$}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$\nabla (\top \rightarrow C), C \Rightarrow C$}
\RightLabel{$L \rightarrow$}
\BIC{$\nabla (\top \rightarrow C) \Rightarrow C$}
\end{prooftree}
Now, let $\D$ be the proof-tree above with $C = \nabla A \vee \nabla B$.
\begin{prooftree}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$\nabla A \Rightarrow \nabla A$}
\RightLabel{$R\vee_1$}
\UIC{$\nabla A \Rightarrow \nabla A \vee \nabla B$}
\RightLabel{$Lw$}
\UIC{$\nabla A , \top \Rightarrow \nabla A \vee \nabla B$}
\RightLabel{$R \rightarrow$}
\UIC{$A \Rightarrow \top \rightarrow (\nabla A \vee \nabla B)$}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$\nabla B \Rightarrow \nabla B$}
\RightLabel{$R\vee_2$}
\UIC{$\nabla B \Rightarrow \nabla A \vee \nabla B$}
\RightLabel{$Lw$}
\UIC{$\nabla B , \top \Rightarrow \nabla A \vee \nabla B$}
\RightLabel{$R \rightarrow$}
\UIC{$B \Rightarrow \top \rightarrow (\nabla A \vee \nabla B)$}
\RightLabel{$L\vee$}
\BIC{$A \vee B \Rightarrow \top \rightarrow (\nabla A \vee \nabla B)$}
\RightLabel{$N$}
\UIC{$\nabla (A \vee B) \Rightarrow \nabla (\top \rightarrow (\nabla A \vee \nabla B))$}
\AXC{$\D$}
\RightLabel{$cut$}
\BIC{$\nabla (A \vee B) \Rightarrow \nabla A \vee \nabla B$}
\end{prooftree}
Call this proof-tree $\D_1$. Construct $\D_n$ inductively as follows.
\begin{prooftree}
\AXC{$\D_{n-1}$}
\noLine
\UIC{$\nabla^{n-1} (A \vee B) \Rightarrow \nabla^{n-1} A \vee \nabla^{n-1} B$}
\RightLabel{$N$}
\UIC{$\nabla^n (A \vee B) \Rightarrow \nabla (\nabla^{n-1} A \vee \nabla^{n-1} B)$}
\AXC{$\D_1$}
\noLine
\UIC{$\nabla (\nabla^{n-1} A \vee \nabla^{n-1} B) \Rightarrow \nabla^n A \vee \nabla^n B$}
\RightLabel{$cut$} \LeftLabel{$\D_n:$}
\BIC{$\nabla^n (A \vee B) \Rightarrow \nabla^n A \vee \nabla^n B$}
\end{prooftree}
\pagebreak
\item \quad
\begin{prooftree}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$A \Rightarrow A$}
\RightLabel{$L \wedge_1$}
\UIC{$A \wedge B \Rightarrow A$}
\RightLabel{$N$} \doubleLine
\UIC{$\nabla^n (A \wedge B) \Rightarrow \nabla^n A$}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$B \Rightarrow B$}
\RightLabel{$L \wedge_2$}
\UIC{$A \wedge B \Rightarrow B$}
\RightLabel{$N$} \doubleLine
\UIC{$\nabla^n (A \wedge B) \Rightarrow \nabla^n B$}
\RightLabel{$R \wedge$}
\BIC{$\nabla^n (A \wedge B) \Rightarrow \nabla^n A \wedge \nabla^n B$}
\end{prooftree}
\item \quad
\begin{prooftree}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$A, \nabla (A \rightarrow B) \Rightarrow A$}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$A, \nabla (A \rightarrow B), B \Rightarrow B$}
\RightLabel{$L \rightarrow$}
\BIC{$\nabla (A \rightarrow B) , A \Rightarrow B$}
\RightLabel{$N^{(n)}$} \doubleLine
\UIC{$\nabla^{n+1} (A \rightarrow B) , \nabla^n A \Rightarrow \nabla^n B$}
\RightLabel{$R \rightarrow$}
\UIC{$\nabla^n (A \rightarrow B) \Rightarrow \nabla^n A \rightarrow \nabla^n B$}
\end{prooftree}
\end{enumerate}
\end{proof}
\begin{thm}\label{thm:sttp-eq-gsttp} \quad
$\stt^+ \vdash \Gamma \Rightarrow \Delta$ iff $\gstt^+ \vdash \Gamma \Rightarrow \Delta$.
\end{thm}
\begin{proof}
($\Rightarrow$) Easily follows from the fact that all rules of $\stt^+$ are just instances of $\gstt^+$'s rules.\\
($\Leftarrow$) We will use induction on the proof-tree $\D$ for $\Gamma \Rightarrow \Delta$ in $\gstt^+$, which ends with rule $R$.
The cases for Axioms are trivial.
For the rules that are common between two systems, just apply $R$ on the proof-tree(s) from the induction hypothesis.
In the cases for $L \wedge$, $L \vee$ and $L \rightarrow$, do the same, and also $\nabla cut$ the sequents proved in Lemma \ref{lem:l-nabla-dist} into the resulting sequent. Finally, if $R$ is $\nabla cut$, just apply $N$ $n$ times before using $cut$ in $\stt^+$.
\end{proof}
\section{Cut-elimination theorem}
The next lemma will help in handling of a case in the main theorem.
\begin{lem}\label{lem:gstt-top-redundant}
If $\gstt \vdash^r \Gamma , \nabla^n \top \Rightarrow \Delta$ then $\gstt \vdash^r \Gamma \Rightarrow \Delta$.
\end{lem}
\begin{proof}
Suppose $\D$ is a proof-tree for $\Gamma , \nabla^n \top \Rightarrow \Delta$ in $\gstt$ and consider different cases for $R$, the last rule in $\D$.
By induction on $\D$ we can assume that the theorem holds for its subtrees.
First, observe that the cases where $R$ is an axiom are trivial. In all other cases, just apply induction hypothesis on the subtrees of $\D$, and then apply $R$. Notice that $\nabla cut$ is not used except in the case where $R$ is $\nabla cut$ itself, where it is applied with a cut-formula of the same rank. So the resulting proof-tree will not have a higher rank than $\D$.
\end{proof}
The following theorem shows that we can imitate any instance of the cut rule in a proof-tree of lower rank.
\begin{thm}\label{thm:gstt-cut-reduction}
If $\gstt \vdash^{r_0} \Gamma \Rightarrow A$ and $\gstt \vdash^{r_1} \Sigma , \nabla^n A \Rightarrow \Delta$, where $r_0, r_1 < \rho(A)$, then $\gstt \vdash^{r_2} \nabla^n \Gamma, \Sigma \Rightarrow \Delta$ and $r_2 < \rho(A)$.
\end{thm}
\begin{proof}
We have two proof-trees
\[
\genfrac{}{}{0pt}{}{\D_0}{\Gamma \Rightarrow A}
\hspace{3em}
\genfrac{}{}{0pt}{}{\D_1}{\Sigma, \nabla^n A \Rightarrow \Delta}
\]
both of a lower rank than that of $A$, and we want to construct a proof-tree
\[\genfrac{}{}{0pt}{}{\D}{\nabla^n \Gamma, \Sigma \Rightarrow \Delta} \]
without increasing the cut rank.
The construction takes place in different cases for the last rule that occurs in $\D_0$ and $\D_1$, which we call $R_0$ and $R_1$, respectively.
The cases are divided into three parts. In the first part, our construction would depend only on $R_0$, and it would work in all cases for $R_1$. The second part is similar: Any of the remaining cases for $R_1$ will also cover all the cases for $R_0$. The cases that remain for the third part are the cases where our construction depends on \emph{both} $R_0$ and $R_1$, which are the cases that the cut-formula is altered in both of the proof-trees. In these cases, $R_1$ determines a specific form for the cut-formula, which will also determine $R_1$.
In first two parts of the cases, we will need induction hypothesis only for premises of one of the subtrees. But in the third part, we need to use induction hypotesis for premises in both $\D_0$ and $\D_1$. So we will apply induction on $h(\D_0) + h(\D_1)$, generalizing all other parameters. Thus, the induction hypothesis reads like this: For any two proof-trees $\D_0'$ and $\D_1'$ such that $h(\D_0') + h(\D_1') < h(\D_0) + h(\D_1)$, where $\D_0'$ proves $\Gamma' \Rightarrow A'$ and $\D_1'$ proves $\Sigma', \nabla^{n'} A'\Rightarrow \Delta'$ for arbitrary $\Gamma'$, $\Sigma'$, $\Delta'$, $A'$ and $n'$, for which we have $\rho(\D_0'),\rho(\D_1') < \rho(A')$, the induction hypothesis gives us a prooftree, denoted by $\IH(\D_0', \D_1')$, which proves $\nabla^{n'}\Gamma', \Sigma' \Rightarrow \Delta'$, and we will also have $\rho(\IH(\D_0', \D_1')) < \rho(A')$.
Now, in any of the following cases, suppose $\D_0$ and $\D_1$ end with any of the rules of $\gstt^+$, and construct the proof-tree $\D$ accordingly.
\textbf{Part I.} First, assume that $R_0$ is an axiom and $R_1$ is any rule. The cases where $R$ is $Id$ or $L \bot$ would be trivial, and $R \top$ is handled by Lemma \ref{lem:gstt-top-redundant}.
Now, let $R_0 \in \{ Lw, Rw, L \wedge, L \vee, L \rightarrow, \nabla cut, N \}$. In all these cases---again, independent of $\D_1$---it suffices to use induction on the premises(s) of this rule and $\D_1$ to remove the cut-formula from both subtrees. Then, we can apply $R$ again to get the desired sequent.\\
\noindent($L \wedge$)
Let $R$ be $L \wedge$, that is
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, \nabla^r B, \nabla^r C \Rightarrow A$}
\RightLabel{$L \wedge$}
\UIC{$\Gamma, \nabla^r (B \wedge C) \Rightarrow A$}
\end{prooftree}
Then by applying $L \wedge$ on $\IH(\D_0', \D_1)$ we have
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, \nabla^r B, \nabla^r C \Rightarrow A$}
\noLine
\AXC{$\D_1$}
\UIC{$\Sigma, \nabla^n A\Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} B, \nabla^{n+r} C, \Sigma \Rightarrow \Delta$}
\RightLabel{$L \wedge$}
\UIC{$\nabla^n \Gamma, \nabla^{n+r} (B \wedge C), \Sigma \Rightarrow \Delta$}
\end{prooftree}\quad\\
\noindent($L \vee$):
Let
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, \nabla^r B \Rightarrow A$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Gamma, \nabla^r C \Rightarrow A$}
\RightLabel{$L \vee$}
\BIC{$\Gamma, \nabla^r (B \vee C) \Rightarrow A$}
\end{prooftree}
Then
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, \nabla^r B \Rightarrow A$}
\noLine
\AXC{$\D_1$}
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} B, \Sigma \Rightarrow \Delta$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Gamma, \nabla^r C \Rightarrow A$}
\noLine
\AXC{$\D_1$}
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} C, \Sigma \Rightarrow \Delta$}
\RightLabel{$L \vee$}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} (B \vee C), \Sigma \Rightarrow \Delta$}
\end{prooftree}\quad\\
\noindent($L \rightarrow$):
Let
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, \nabla^{r+1} (B \rightarrow C) \Rightarrow \nabla^r B$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Gamma, \nabla^{r+1} (B \rightarrow C), \nabla^r C \Rightarrow A$}
\RightLabel{$L \rightarrow$}
\BIC{$\Gamma, \nabla^{r+1} (B \rightarrow C) \Rightarrow A$}
\end{prooftree}
Then
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, \nabla^{r+1} (B \rightarrow C) \Rightarrow \nabla^r B$}
\RightLabel{$N^n$} \doubleLine
\UIC{$\nabla^n \Gamma, \nabla^{n+r+1} (B \rightarrow C) \Rightarrow \nabla^{n+r} B$}
\RightLabel{$Lw$}
\UIC{$\nabla^n \Gamma, \nabla^{n+r+1} (B \rightarrow C), \Sigma \Rightarrow \nabla^{n+r} B$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Gamma, \nabla^r C, \nabla^{r+1} (B \rightarrow C) \Rightarrow A$}
\noLine
\AXC{$\D_1$}
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r+1} (B \rightarrow C), \nabla^{n+r} C, \Sigma \Rightarrow \Delta$}
\RightLabel{$L \rightarrow$}
\BIC{$\nabla^n \Gamma, \nabla^{n+r+1} (B \rightarrow C), \Sigma \Rightarrow \Delta$}
\end{prooftree}
\noindent($\nabla cut$):
Assume $\D_0$ ends with a $\nabla cut$ with cut-formula $A'$. Recall that by assumption $A'$ must have a lower rank than $A$.
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma \Rightarrow A'$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Pi, \nabla^{n'} A' \Rightarrow A$}
\RightLabel{$\nabla cut$}
\BIC{$\nabla^{n'} \Gamma, \Pi \Rightarrow A$}
\end{prooftree}
We must construct a proof-tree for $\nabla^{n + n'} \Gamma, \nabla^n \Pi, \Sigma \Rightarrow \Delta$. We can use the induction hypothesis first to remove $A$, and then use a low rank $\nabla cut$ to remove $A'$.
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma \Rightarrow A'$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Pi, \nabla^{n'} A' \Rightarrow A$}
\noLine
\AXC{$\D_1$}
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Pi, \nabla^{n + n'} A', \Sigma \Rightarrow \Delta$}
\RightLabel{$\nabla cut$}
\BIC{$\nabla^{n + n'} \Gamma, \nabla^n \Pi, \Sigma \Rightarrow \Delta$}
\end{prooftree}\quad\\
\noindent($N$):
Let $A = \nabla B$ and suppose that $\D_0$ proves $\nabla \Gamma \Rightarrow \nabla B$ and $\D_1$ proves $\Sigma, \nabla^n (\nabla B) \Rightarrow \Delta$. Induction hypothesis for $\D_0$'s immediate sub-tree and $\D_1$ gives us $\nabla^{n+1} \Gamma, \Sigma \Rightarrow \Delta$.
\textbf{Part II.} The rest of the cases for $R_0$ can't be solved independent of $R_1$. So in the second part, we will investigate the cases for $R_1$ where the solution can be constructed independent of $R_0$. Notice that this time we have less possibilities for $R_0$, because we have already solved most of them in the first part. We can assume that $R_0$ is either of $R\star$ for $\star \in \{\wedge, \vee_{1/2}, \rightarrow\}$.
The cases where $R_1$ is an axiom are trivial. Notice that in $L \bot$ case, $\bot$ can't be the cut-formula, since all possible cases for $\D_0$ alter the right side of the sequent, but none of them are able to introduce $\bot$ on the right-side of a sequent.
In the remaining cases, where the cut-formula is not principal in $R_1$, the construction is similar to the first part: Apply the same rule on the sequent from the induction hypothesis. But in cases where $A$ is principal in $R_1$, which are to be handeld in the third part, we must also use the induction hypothesis for $\D_0$, both with a different cut-fornula.
We now address the second part of the cases. For the sake of briefness, we will only explain the cases for $L \wedge$, $R \vee_1$, $R \rightarrow$ and $N$, the last two of which are of special concern, in which we must use induction hypothesis with different $n$. The rest would be handled similarly. Now suppose $R_1$ is either of the following.\\
\noindent($L \wedge$):
Assume that $R_1$ is $L \wedge$, but the cut-formula is not principal.
\begin{prooftree}
\AXC{$\D_1'$} \noLine
\UIC{$\Sigma, \nabla^n A, \nabla^r B, \nabla^r C \Rightarrow \Delta$}
\RightLabel{$L \wedge$}
\UIC{$\Sigma, \nabla^n A, \nabla^r (B \wedge C) \Rightarrow \Delta$}
\end{prooftree}
From induction hypothesis we have $\nabla^n \Gamma, \Sigma, \nabla^r B \Rightarrow \Delta$. By $L \wedge$ we have $\nabla^n \Gamma, \Sigma, \nabla^r (B \wedge C) \Rightarrow \Delta$.\\
\noindent($R \vee_1$): Suppose that $R_1$ is $R \vee_1$.
\begin{prooftree}
\AXC{$\D_1'$} \noLine
\UIC{$\Sigma, \nabla^n A \Rightarrow B$}
\RightLabel{$R \vee_1$}
\UIC{$\Sigma, \nabla^n A \Rightarrow B \vee C$}
\end{prooftree}
Again, use the induction hypothesis to get $\nabla^n \Gamma, \Sigma \Rightarrow B$, then apply $R \vee_1$ to reach the desired sequent.\\
\noindent($R \rightarrow$): Assume $R_1$ is an instance of $R \rightarrow$.
\begin{prooftree}
\AXC{$\D_1'$} \noLine
\UIC{$\nabla \Sigma, \nabla^{n+1} A, B \Rightarrow C$}
\RightLabel{$R \rightarrow$}
\UIC{$\Sigma, \nabla^n A \Rightarrow B \rightarrow C$}
\end{prooftree}
From induction hypothesis (with $n = n+1$), we have $\nabla^{n+1} \Gamma, \nabla \Sigma, B \Rightarrow C$. We can apply $R \rightarrow$ to get $\nabla^n \Gamma, \Sigma \Rightarrow B \rightarrow C$.\\
\noindent($N$): Suppose $R_1$ is $N$.
\begin{prooftree}
\AXC{$\D_1'$} \noLine
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{$N$}
\UIC{$\nabla \Sigma, \nabla^{n+1} A \Rightarrow \nabla \Delta$}
\end{prooftree}
If we assume that the cut-formula is $A$, from the induction hypothesis we have $\nabla^n \Gamma, \Sigma \Rightarrow \Delta$. By $N$ we have $\nabla^{n+1} \Gamma, \nabla \Sigma \Rightarrow \nabla \Delta$, which is the desired sequent. Notice that the cut-formula can't be $\nabla A$, because no candidate for $R_0$ proves a sequent with $\nabla$ on its right-side.
\textbf{Part III.} In the last part of the proof, we will show how the construction takes place in the cases where the cut-formula is principal in $R_1$, which can be either of $L\star (\star \in \{\wedge, \vee, \rightarrow\})$.
Any choice for $R_1$ also determines $R_0$, because in all candidates for $R_0$, which can be either of $R\star (\star \in \{\wedge, \vee_{1/2}, \rightarrow\})$, the cut-formula $A$ is principal.
Now suppose $R_0$ and $R_1$ be instances of the following rules, respectively.\\
\noindent($R \wedge$ and $L \wedge$): Suppose $R_0$ is $R \wedge$ and $R_1$ is $L \wedge$.
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma \Rightarrow A_1$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Gamma \Rightarrow A_2$}
\RightLabel{$R \wedge$}
\BIC{$\Gamma \Rightarrow A_1 \wedge A_2$}
\noLine
\AXC{$\D_1'$}
\UIC{$\Sigma, \nabla^n A_1, \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$L \wedge$}
\UIC{$\Sigma, \nabla^n (A_1 \wedge A_2) \Rightarrow \Delta$}
\noLine
\BIC{}
\end{prooftree}
Then
\begin{prooftree}
\AXC{$\D_0''$}\noLine
\UIC{$\Gamma \Rightarrow A_2$}
\AXC{$\D_0'$}\noLine
\UIC{$\Gamma \Rightarrow A_1$}
\AXC{$\D_1'$}\noLine
\UIC{$\Sigma, \nabla^n A_1, \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$\nabla cut$}
\BIC{$\nabla^n \Gamma, \Sigma, \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$\nabla cut$}
\BIC{$(\nabla^n \Gamma)^2, \Sigma \Rightarrow \Delta$}
\RightLabel{$(Lc)$}\doubleLine
\UIC{$\nabla^n \Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
Notice that both instances of $\nabla cut$ in the above proof-tree have lower rank than $\D$. Also notice that we are using Theorem \ref{thm:stt-lc-elim}.\\
\noindent($R \vee_1$ or $R \vee_2$, and $L \vee$):
Suppose that $R_0$ is either of $R \vee_c ~ (c \in \{1,2\})$ and $R_1$ is $L \vee$.
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma \Rightarrow A_c$}
\RightLabel{$R \vee_c$}
\UIC{$\Gamma \Rightarrow A_1 \vee A_2$}
\noLine
\AXC{$\D_{10}$}
\UIC{$\Sigma, \nabla^n A_1 \Rightarrow \Delta$}
\noLine
\AXC{$\D_{11}$}
\UIC{$\Sigma, \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$L \vee$}
\BIC{$\Sigma, \nabla^n (A_1 \vee A_2) \Rightarrow \Delta$}
\noLine
\BIC{}
\end{prooftree}
Then
\begin{prooftree}
\AXC{$\D_0'$}\noLine
\UIC{$\Gamma \Rightarrow A_c$}
\AXC{$\D_{1c}$}\noLine
\UIC{$\Sigma, \nabla^n A_c \Rightarrow \Delta$}
\RightLabel{$\nabla cut$}
\BIC{$\nabla^n \Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
\noindent($\D_0$ and $L \rightarrow$): Let $R_0$ and $R_1$ be $R \rightarrow$ and $L \rightarrow$ respectively.
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\nabla \Gamma, A_1 \Rightarrow A_2$}
\RightLabel{$R \rightarrow$}
\UIC{$\Gamma \Rightarrow A_1 \rightarrow A_2$}
\noLine
\AXC{$\D_1'$}
\UIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2) \Rightarrow \nabla^n A_1$}
\noLine
\AXC{$\D_1''$}
\UIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2), \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$L \rightarrow$}
\BIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2) \Rightarrow \Delta$}
\noLine
\BIC{}
\end{prooftree}
Let the following proof-tree be called $\D$.
\begin{prooftree}
\AXC{$\D_0'$} \noLine
\UIC{$\nabla \Gamma, A_1 \Rightarrow A_2$}
\AXC{$\D_0$} \noLine
\UIC{$\Gamma \Rightarrow A_1 \rightarrow A_2$}
\AXC{$\D_1''$} \noLine
\UIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2), \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^{n+1} \Gamma, \Sigma, \nabla^n A_2 \Rightarrow \Delta$}
\LeftLabel{$\D$} \RightLabel{$\nabla cut$}
\BIC{$(\nabla^{n+1} \Gamma)^2, \nabla^n A_1, \Sigma \Rightarrow \Delta$}
\end{prooftree}
Then
\begin{prooftree}
\AXC{$\D_0$} \noLine
\UIC{$\Gamma \Rightarrow A_1 \rightarrow A_2$}
\AXC{$\D_1'$} \noLine
\UIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2) \Rightarrow \nabla^n A_1$}
\RightLabel{IH}
\BIC{$\nabla^{n+1} \Gamma, \Sigma \Rightarrow \nabla^n A_1$}
\AXC{$\D$}
\RightLabel{$\nabla cut$}
\BIC{$(\nabla^{n+1} \Gamma)^3, \Sigma^2 \Rightarrow \Delta$}
\RightLabel{$(Lc)$} \doubleLine
\UIC{$\nabla^{n+1} \Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
\vspace{5mm}
Now we have a construction for any two possible pair of rules, in $\gstt^+$. This concludes the proof of the theorem in all cases.
\end{proof}
The next theorem shows that the $cut$ rule is redundant.
\begin{thm}[Cut-elimination for $\stl$]\label{thm:gstt-eq-gsttp}
$\gstt \vdash \Gamma \Rightarrow \Delta$ iff $\gstt^+ \vdash \Gamma \Rightarrow \Delta$.
\end{thm}
\begin{proof}
First, we will show that for any non-zero-rank proof of $\Gamma \Rightarrow \Delta$ like $\D$ in $\gstt^+$, there is another proof of the same sequent with a strictly lower rank. Suppose $\D$ has subtree(s) called $\D_0$ (and possibly $\D_1$, if the last rule has two premises). Using induction on $h(\D)$, the induction hypothesis for $\D_i ~(i \in \{0,1\})$ gives us a proof-tree with the same conclusion, which we call $\IH(\D_i)$, but with a lower rank, i.e. $\rho(\IH(\D_i)) < \rho(\D_i)$. We now consider two cases for the last rule in $\D$.
\begin{enumerate}[label=\Roman*]
\item If the last rule of $\D$ is of a lower rank than $\D$ itself, which means that the last rule in $\D$ is not the $\nabla cut$ instance with the maximum rank, then we can apply the same last rule on $\IH(\D_0)$ (and possibly $\D_1$), to construct a proof of $\Gamma \Rightarrow \Delta$ with a strictly lower rank.
\item If the last rule of $\D$ is the instance of $\nabla cut$ rule instance with the maximum rank, we can apply Theorem \ref{thm:gstt-cut-reduction} to $\IH(\D_0)$ and $\IH(\D_1)$ to prove the same sequent as it would be proved by $\nabla cut$, but with a strictly lower rank.
\end{enumerate}
So for any proof of $\Gamma \Rightarrow \Delta$ in $\gstt^+$, we also have a proof of rank $0$, which is cut-free, and hence provable in $\gstt$.
\end{proof}
\section{Logic of spacetime with intuitionistic implication}
A conservative extension of $\st$ is introduced in the next definition. This extension, which is called $\ist$ here, enrisches $\st$ with intuitionistic implication. $\ist$ is conservative in the sense that adding intuitionistic implication will give no more power to the system in proving propositions in the original language of $\st$.
\input{dfn/ist}
The following theorem shows that $\ist$ is just a conservative extension of $\st$.
\begin{thm}
For any $\Gamma$ and $\varphi$ in the language $\mathcal{L}$ we have $\st \vdash \Gamma \Rightarrow \varphi$ if and only if $\ist \vdash \Gamma \Rightarrow \varphi$.
\end{thm}
\begin{proof}
$(\Rightarrow)$ If $\st \vdash \Gamma \Rightarrow \varphi$, then obviously $\ist \vdash \Gamma \Rightarrow \varphi$, since $\ist$ is just an extension of $\st$.
$(\Leftarrow)$ Assume $\ist \vdash \Gamma \Rightarrow \varphi$ by a proof-tree $\D$. Now, consider different cases for the last rule in $\D$. We will construct a proof-tree for $\varphi$ in $\st$ in different cases for the last rule in $\D$, using induction on the height of $\D$. All cases are trivial except the cases for $L \supset$ and $R \supset$. But since $\Gamma$ and $\varphi$ are $\mathcal{L}$-formulas, none of them may contain $\supset$, so both these two cases are not feasible.
\end{proof}
Now, we will introduce the intuitionistic counterparts for $\stt$ and $\gstt$, which we call $\istt$ and $\igstt$. Next, we will also show that all the theorems of the previous section can be easily extended to also contain the cases for rules for intuitionistic implication, yielding the same results for $\ist$ and $\igstt$.
\input{dfn/istt}
The following theorems are proved similar to the theorems in the previous section, with addition of an operator $\supset$ to the language and two rules $L \supset$ and $R \supset$ to the system. So we will only mention these new cases in the following proofs. Observe that presense of these rules in the new systems will not affect the other cases in our proofs.
\begin{lem}[$Id$]\label{lem:istt-id-form}
$\istt \vdash \Gamma, A \Rightarrow A$.
\end{lem}
\begin{proof}
Just like the proof of Lemma \ref{lem:stt-id-form}, we use induction on $A$. All cases are handled similarly, except a new case for $A = (B \supset C)$, which is handled as follows.
\begin{prooftree}
\AXC{IH} \noLine
\UIC{$\Gamma, (B \supset C), B \Rightarrow B$}
\AXC{IH} \noLine
\UIC{$\Gamma, (B \supset C), C \Rightarrow C$}
\RightLabel{$L \supset$}
\BIC{$\Gamma, (B \supset C), B \Rightarrow C$}
\RightLabel{$R \supset$}
\UIC{$\Gamma, B \supset C \Rightarrow B \supset C$}
\end{prooftree}
\end{proof}
\begin{lem}[Inversion]\label{lem:istt-inversion}
\begin{enumerate}
\item If $\stt \vdash_h \Gamma, \nabla^n (A \wedge B) \Rightarrow \Delta$ then $\stt \vdash_h \Gamma, \nabla^n A, \nabla^n B \Rightarrow \Delta$.
\item If $\stt \vdash_h \Gamma, \nabla^n (A \vee B) \Rightarrow \Delta$ then $\stt \vdash_h \Gamma, \nabla^n A \Rightarrow \Delta$ and $\stt \vdash_h \Gamma, \nabla^n B \Rightarrow \Delta$.
\item If $\stt \vdash_h \Gamma \Rightarrow A \wedge B$ then $\stt \vdash_h \Gamma \Rightarrow A$ and $\stt \vdash_h \Gamma \Rightarrow B$.
\item If $\istt \vdash_h \Gamma, \nabla^n (A \supset B) \Rightarrow \Delta$ then $\istt \vdash_h \Gamma, \nabla^n B \Rightarrow \Delta$.
\end{enumerate}
\end{lem}
\begin{proof}
Parts 1, 2 and 3 are proved similar to Lemma \ref{lem:stt-inversion}.
Similarly, part 4 is proved by induction on the proof-tree $\D$ for $\Gamma, \nabla^n (A \supset B) \Rightarrow \Delta$ assuming it ends with a rule $R$. Axiom cases are trivial. In case $R$ is $L \supset$ and $A \supset B$ is principal, which implies $n = 0$, the subtrees of $\D$ prove the desired sequents. In all other cases just commute $R$ with $\IH(\D_0)$ and $\IH(\D_1)$
\end{proof}
\begin{thm}[$Lc$]\label{thm:istt-lc-elim} If $\stt \vdash_h \Gamma, A^2 \Rightarrow \Delta$ then $\stt \vdash_h \Gamma, A \Rightarrow \Delta$.
\end{thm}
\begin{proof}
By induction on the proof for $\Gamma, A^2 \Rightarrow \Delta$, which we call $\D$ and ends with rule $R$.
Cases for axioms are trivial. All cases where none of occurrences of $A$ are principal are handled by commuting $R$ with $\IH(\D_i)$. Cases where one occurence of $A$ is principal in $R$, where $R$ is not $L \supset$ are handled similar to Lemma \ref{thm:stt-lc-elim}.
Now suppose $R$ is $L \supset$ and $A = A \supset B$.
\begin{prooftree}
\AXC{$\D_0$} \noLine
\UIC{$\Gamma, (A \supset B)^2 \Rightarrow A$}
\AXC{$\D_1$} \noLine
\UIC{$\Gamma, B, A \supset B \Rightarrow \Delta$}
\RightLabel{$L \supset$}
\BIC{$\Gamma, (A \supset B)^2 \Rightarrow \Delta$}
\end{prooftree}
By Lemma \ref{lem:istt-inversion}, part 4, we have $\Gamma, B^2 \Rightarrow \Delta$. By induction hypothesis we have $\Gamma, A \supset B \Rightarrow A$ and $\Gamma, B, \Rightarrow \Delta$. By $L \supset$ we have the desired sequent.
\end{proof}
\begin{thm}\label{thm:istt-eq-ist} $\istt \vdash \Gamma \Rightarrow \Delta$ iff $\ist \vdash \Gamma \Rightarrow \Delta$.
\end{thm}
\begin{proof}
Similat to the proof of Theorem \ref{thm:stt-eq-st}, except that we would use Theorem \ref{thm:stt-lc-elim}.
\end{proof}
\begin{thm}\label{thm:isttp-eq-istp}
$\istt^+ \vdash \Gamma \Rightarrow \Delta$ iff $\ist^+ \vdash \Gamma \Rightarrow \Delta$.
\end{thm}
\begin{proof}
Similar to the proof of Theorem \ref{thm:sttp-eq-stp}.
\end{proof}
\begin{lem}\label{lem:i-l-nabla-dist} \quad
\begin{enumerate}
\item $\istt^+ \vdash \nabla^n (A \vee B) \Rightarrow \nabla^n A \vee \nabla^n B$.
\item $\istt^+ \vdash \nabla^n (A \wedge B) \Rightarrow \nabla^n A \wedge \nabla^n B$.
\item $\istt^+ \vdash \nabla^n (A \rightarrow B) \Rightarrow \nabla^n A \rightarrow \nabla^n B$.
\item $\istt^+ \vdash \nabla^n (A \supset B) \Rightarrow \nabla^n A \supset \nabla^n B$.
\end{enumerate}
\end{lem}
\begin{proof}
Parts 1, 2 and 3 are proved as in Lemma \ref{lem:l-nabla-dist}. Part 4 can also be proved similarly.
\begin{prooftree}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$A, A \supset B \Rightarrow A$}
\AXC{}
\RightLabel{$(Id)$}
\UIC{$A, B \Rightarrow B$}
\RightLabel{$L \supset$}
\BIC{$A \supset B , A \Rightarrow B$}
\RightLabel{$N^{(n)}$} \doubleLine
\UIC{$\nabla^n (A \supset B) , \nabla^n A \Rightarrow \nabla^n B$}
\RightLabel{$R \supset$}
\UIC{$\nabla^n (A \supset B) \Rightarrow \nabla^n A \supset \nabla^n B$}
\end{prooftree}
\end{proof}
\begin{dfn}[$\igstt$]
Define the ssystem $\igstt$ as the system with the same rules as $\gstt$, plus the following rules.
\begin{multicols}{2}
\begin{prooftree}
\AXC{$\Gamma, \nabla^n (A \supset B) \Rightarrow \nabla^n A$}
\AXC{$\Gamma, \nabla^n B \Rightarrow \Delta$}
\RightLabel{$L \supset$}
\BIC{$\Gamma, \nabla^n (A \supset B) \Rightarrow \Delta$}
\end{prooftree}
\columnbreak
\begin{prooftree}
\AXC{$\Gamma, A \Rightarrow B$}
\RightLabel{$R \supset$}
\UIC{$\Gamma \Rightarrow A \supset B$}
\end{prooftree}
\end{multicols}
We denote the system with the $\nabla cut$ rule as $\igstt^+$.
\end{dfn}
\begin{thm}\label{thm:isttp-eq-igsttp}
$\ist^+ \vdash \Gamma \Rightarrow \Delta$ iff $\igstt^+ \vdash \Gamma \Rightarrow \Delta$.
\end{thm}
\begin{proof}
The proof is essentially the same as Theorem \ref{thm:sttp-eq-gsttp}, with additional cases for intuitionistic implication rules. Again, the left-to-right direction is obvious from the fact that all rules of $\istt^+$ are just instances of $\igstt^+$'s rules. For the other direction, we will apply induction on the proof-tree for $\Gamma \Rightarrow \Delta$ in $\igstt^+$, which we call $\D$ and assume that ends with a rule $R$. We can construct a proof-tree for $\Gamma \Rightarrow \Delta$ in $\istt^+$ in different cases for $R$, just as we did for $\stt^+$ in Theorem \ref{thm:sttp-eq-gsttp}, using Lemma \ref{lem:i-l-nabla-dist}.
It remains to handle the cases where $R$ is $L \supset$ and $R \supset$. The case for $R \supset$ is obvoius: We have $R \supset$ also in $\istt^+$, so we can apply it again on the proof-tree from induction hypothesis. In the case for $L \supset$, we have two proof-trees for $\Gamma, \nabla^n (A \supset B) \Rightarrow \nabla^n A$ and $\Gamma, \nabla^n B \Rightarrow \Delta$. Applying $L \supset$ in $\istt^+$ proves $\Gamma, \nabla^n A \supset \nabla^n B \Rightarrow \Delta$. Using part 4 of Lemma \ref{lem:i-l-nabla-dist} and $\nabla cut$, we would have the desired sequent.
\end{proof}
\begin{lem}\label{lem:isttp-top-redundant} If $\igstt^+ \vdash^r \Gamma , \nabla^n \top \Rightarrow \Delta$ then $\igstt^+ \vdash^r \Gamma \Rightarrow \Delta$.
\end{lem}
\begin{proof}
The proof is similar to the proof of Lemma \ref{lem:gstt-top-redundant}. Assuming a proof-tree $\D$ for $\Gamma, \nabla^n \top \Rightarrow \Delta$, we will construct a proof-tree for $\Gamma \Rightarrow \Delta$ in cases for the last rule in $\D$, without increasing the rank. In all cases except $L \supset$ and $R \supset$, the construction takes place using induction on the height of $\D$, just as it was in Lemma \ref{lem:gstt-top-redundant}. The cases for $L \supset$ and $R \supset$ are similar: Just apply the same rule again on the sequent from induction hypothesis. Obviously, this will not increase the rank of the resulting proof-tree.
\end{proof}
Next theorem is just a generalization of Theorem \ref{thm:gstt-cut-reduction} for $\igstt$.
\begin{thm}\label{thm:igstt-cut-reduction}
If $\igstt \vdash^{r_0} \Gamma \Rightarrow A$ and $\igstt \vdash^{r_1} \Sigma , \nabla^n A \Rightarrow \Delta$, where $r_0, r_1 < \rho(A)$, then $\igstt \vdash^{r_2} \nabla^n \Gamma, \Sigma \Rightarrow \Delta$ and $r_2 < \rho(A)$.
\end{thm}
\begin{proof}
We have two proof-trees for $\Gamma \Rightarrow A$ and $\Sigma , \nabla^n A \Rightarrow \Delta$. Call them $\D_0$ and $\D_1$ respectively. The proof of the theorem is essentially the same as the proof for Theorem \ref{thm:gstt-cut-reduction}, by case analysis on the last rules in $\D_0$ and $\D_1$, and using induction on the height of both of the proof-trees. It remains to check four cases:
\begin{enumerate}
\item $\D_0$ ends with $L \supset$, no matter which rule $\D_1$ ends with.
\item $\D_1$ ends with $R \supset$, no matter which rule $\D_0$ ends with.
\item $\D_1$ ends with $L \supset$, and the cut-formula is not principal in it, no matter which rule $\D_0$ ends with.
\item $\D_1$ ends with $L \supset$ and the cut-formula is its principal formula, which implies that $\D_0$ must end with $R \supset$.
\end{enumerate}
In case 1, $\D_0$ proves $\Gamma, \nabla^r (B \supset C) \Rightarrow A$ for some $r$, and has subtrees $\D_0'$ and $\D_0''$ which prove $\Gamma, \nabla^{r} (B \supset C) \Rightarrow \nabla^r B$ and $\Gamma, \nabla^r C \Rightarrow A$, respectively.
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, \nabla^{r} (B \supset C) \Rightarrow \nabla^r B$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Gamma, \nabla^r C \Rightarrow A$}
\RightLabel{$L \supset$}
\BIC{$\Gamma, \nabla^{r} (B \supset C) \Rightarrow A$}
\end{prooftree}
Then
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, \nabla^{r} (B \supset C) \Rightarrow \nabla^r B$}
\RightLabel{$N^n$} \doubleLine
\UIC{$\nabla^n \Gamma, \nabla^{n+r} (B \supset C) \Rightarrow \nabla^{n+r} B$}
\RightLabel{$Lw$}
\UIC{$\nabla^n \Gamma, \nabla^{n+r} (B \supset C), \Sigma \Rightarrow \nabla^{n+r} B$}
\noLine
\AXC{$\D_0''$}
\UIC{$\Gamma, \nabla^r C \Rightarrow A$}
\noLine
\AXC{$\D_1$}
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} C, \Sigma \Rightarrow \Delta$}
\RightLabel{$L \supset$}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} (B \supset C), \Sigma \Rightarrow \Delta$}
\end{prooftree}
In case 2, $\D_1$ proves $\Sigma, \nabla^n A \Rightarrow B \supset C$, and has a subtree $\D_1'$ which proves $\Sigma, \nabla^n A, B \Rightarrow C$. Induction hypothesis for $\D_0$ and $\D_1'$ gives us a proof for $\nabla^n \Gamma, \Sigma, B \Rightarrow C$. The desired sequent would result from an application of $R \supset$
In case 3, $\D_1$ proves $\Sigma, \nabla^n A, B \supset C \Rightarrow \Delta$, and has subtrees $\D_1'$ and $\D_1''$ which prove $\Sigma, \nabla^n A \Rightarrow B$ and $\Sigma, \nabla^n A, C \Rightarrow \Delta$, respectively. Similar to the previous case use IH to get $\nabla^n \Gamma, \Sigma \Rightarrow B$ and $\nabla^n \Gamma, \Sigma, C \Rightarrow \Delta$ and then apply $L \supset$.
In case 4, we have
\begin{prooftree}
\noLine
\AXC{$\D_0'$}
\UIC{$\Gamma, A_1 \Rightarrow A_2$}
\RightLabel{$R \supset$}
\UIC{$\Gamma \Rightarrow A_1 \supset A_2$}
\noLine
\AXC{$\D_1'$}
\UIC{$\Sigma, \nabla^{n} (A_1 \supset A_2) \Rightarrow \nabla^n A_1$}
\noLine
\AXC{$\D_1''$}
\UIC{$\Sigma, \nabla^{n} (A_1 \supset A_2), \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$L \supset$}