-
Notifications
You must be signed in to change notification settings - Fork 0
/
sc-rna-analyze-wf.cwl
877 lines (771 loc) · 24 KB
/
sc-rna-analyze-wf.cwl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
cwlVersion: v1.0
class: Workflow
requirements:
- class: SubworkflowFeatureRequirement
- class: StepInputExpressionRequirement
- class: InlineJavascriptRequirement
- class: MultipleInputFeatureRequirement
inputs:
feature_bc_matrices_folder:
type: File
doc: |
Path to the compressed folder with feature-barcode matrix from Cell Ranger Count/Aggregate
experiment in MEX format.
aggregation_metadata:
type: File?
doc: |
Path to the metadata TSV/CSV file to set the datasets identities. If '--mex' points to
the Cell Ranger Aggregate outputs, the aggregation.csv file can be used. If input is not
provided, the default dummy_metadata.csv will be used instead.
grouping_data:
type: File?
doc: |
Path to the TSV/CSV file to define datasets grouping.
First column - 'library_id' with the values and order
that correspond to the 'library_id' column from the '
--identity' file, second column 'condition'.
Default: each dataset is assigned to its own group.
barcodes_data:
type: File?
doc: |
Path to the TSV/CSV file to optionally prefilter and
extend Seurat object metadata be selected barcodes.
First column should be named as 'barcode'. If file
includes any other columns they will be added to the
Seurat object metadata ovewriting the existing ones if
those are present.
Default: all cells used, no extra metadata is added
rna_minimum_cells:
type: int?
doc: |
Include only genes detected in at least this many cells.
Default: 5 (applied to all datasets)
minimum_genes:
type:
- "null"
- int
- int[]
doc: |
Include cells where at least this many genes are detected. If multiple values
provided, each of them will be applied to the correspondent dataset from the
'--mex' input based on the '--identity' file.
Default: 250 (applied to all datasets)
maximum_genes:
type:
- "null"
- int
- int[]
doc: |
Include cells with the number of genes not bigger than this value. If multiple
values provided, each of them will be applied to the correspondent dataset from
the '--mex' input based on the '--identity' file.
Default: 5000 (applied to all datasets)
rna_minimum_umi:
type:
- "null"
- int
- int[]
doc: |
Include cells where at least this many UMI (transcripts) are detected.
If multiple values provided, each of them will be applied to the correspondent
dataset from the '--mex' input based on the '--identity' file.
Default: 500 (applied to all datasets)
minimum_novelty_score:
type:
- "null"
- float
- float[]
doc: |
Include cells with the novelty score not lower than this value, calculated for
as log10(genes)/log10(UMI). If multiple values provided, each of them will
be applied to the correspondent dataset from the '--mex' input based on the
'--identity' file.
Default: 0.8 (applied to all datasets)
mito_pattern:
type: string?
doc: |
Regex pattern to identify mitochondrial genes.
Default: '^Mt-'
maximum_mito_perc:
type: float?
doc: |
Include cells with the percentage of transcripts mapped to mitochondrial
genes not bigger than this value.
Default: 5 (applied to all datasets)
cell_cycle_data:
type: File?
doc: |
Path to the TSV/CSV file with the information for cell cycle score assignment.
First column - 'phase', second column 'gene_id'. If loaded Seurat object already
includes cell cycle scores in 'S.Score' and 'G2M.Score' metatada columns they will
be removed.
Default: skip cell cycle score assignment.
highly_var_genes_count:
type: int?
doc: |
Number of highly variable genes used in datasets integration, scaling and
dimensionality reduction.
Default: 3000
regress_mito_perc:
type: boolean?
doc: |
Regress the percentage of transcripts mapped to mitochondrial genes as a
confounding source of variation.
Default: false
regress_cellcycle:
type: boolean?
doc: |
Regress cell cycle scores as a confounding source of variation.
Ignored if --cellcycle is not provided.
Default: false
dimensions:
type:
- "null"
- int
- int[]
doc: |
Dimensionality to use in UMAP projection and when constructing nearest-neighbor
graph before clustering (from 1 to 50). If single value N is provided, use from
1 to N dimensions. If multiple values are provided, subset to only selected
dimensions.
Default: from 1 to 10
resolution:
type:
- "null"
- float
- float[]
doc: |
Clustering resolution applied to the constructed nearest-neighbor graph.
Can be set as an array.
Default: 0.3, 0.5, 1.0
genes_of_interest:
type:
- "null"
- string
- string[]
doc: |
Genes of interest to build genes expression plots.
Default: None
minimum_logfc:
type: float?
doc: |
For putative gene markers identification include only those genes that
on average have log fold change difference in expression between every
tested pair of clusters not lower than this value. Ignored if '--diffgenes'
is not set.
Default: 0.25
minimum_pct:
type: float?
doc: |
For putative gene markers identification include only those genes that
are detected in not lower than this fraction of cells in either of the
two tested clusters. Ignored if '--diffgenes' is not set.
Default: 0.1
parallel_memory_limit:
type: int?
doc: |
Maximum memory in GB allowed to be shared between the workers
when using multiple --cpus.
Default: 32
vector_memory_limit:
type: int?
doc: |
Maximum vector memory in GB allowed to be used by R.
Default: 128
threads:
type: int?
doc: |
Number of cores/cpus to use.
Default: 1
outputs:
raw_1_2_qc_mtrcs_pca_plot_png:
type: File?
outputSource: sc_rna_filter/raw_1_2_qc_mtrcs_pca_plot_png
doc: |
PC1 and PC2 from the QC metrics PCA (not filtered).
PNG format
raw_2_3_qc_mtrcs_pca_plot_png:
type: File?
outputSource: sc_rna_filter/raw_2_3_qc_mtrcs_pca_plot_png
doc: |
PC2 and PC3 from the QC metrics PCA (not filtered).
PNG format
raw_cells_count_plot_png:
type: File?
outputSource: sc_rna_filter/raw_cells_count_plot_png
doc: |
Number of cells per dataset (not filtered).
PNG format
raw_umi_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/raw_umi_dnst_plot_png
doc: |
UMI per cell density (not filtered).
PNG format
raw_gene_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/raw_gene_dnst_plot_png
doc: |
Genes per cell density (not filtered).
PNG format
raw_gene_umi_corr_plot_png:
type: File?
outputSource: sc_rna_filter/raw_gene_umi_corr_plot_png
doc: |
Genes vs UMI per cell correlation (not filtered).
PNG format
raw_mito_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/raw_mito_dnst_plot_png
doc: |
Percentage of transcripts mapped to mitochondrial genes per cell density (not filtered).
PNG format
raw_nvlt_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/raw_nvlt_dnst_plot_png
doc: |
Novelty score per cell density (not filtered).
PNG format
raw_qc_mtrcs_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/raw_qc_mtrcs_dnst_plot_png
doc: |
QC metrics per cell density (not filtered).
PNG format
raw_umi_dnst_spl_cnd_plot_png:
type: File?
outputSource: sc_rna_filter/raw_umi_dnst_spl_cnd_plot_png
doc: |
Split by grouping condition UMI per cell density (not filtered).
PNG format
raw_gene_dnst_spl_cnd_plot_png:
type: File?
outputSource: sc_rna_filter/raw_gene_dnst_spl_cnd_plot_png
doc: |
Split by grouping condition genes per cell density (not filtered).
PNG format
raw_mito_dnst_spl_cnd_plot_png:
type: File?
outputSource: sc_rna_filter/raw_mito_dnst_spl_cnd_plot_png
doc: |
Split by grouping condition the percentage of transcripts mapped
to mitochondrial genes per cell density (not filtered).
PNG format
raw_nvlt_dnst_spl_cnd_plot_png:
type: File?
outputSource: sc_rna_filter/raw_nvlt_dnst_spl_cnd_plot_png
doc: |
Split by grouping condition the novelty score per cell density (not filtered).
PNG format
fltr_1_2_qc_mtrcs_pca_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_1_2_qc_mtrcs_pca_plot_png
doc: |
PC1 and PC2 from the QC metrics PCA (filtered).
PNG format
fltr_2_3_qc_mtrcs_pca_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_2_3_qc_mtrcs_pca_plot_png
doc: |
PC2 and PC3 from the QC metrics PCA (filtered).
PNG format
fltr_cells_count_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_cells_count_plot_png
doc: |
Number of cells per dataset (filtered).
PNG format
fltr_umi_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_umi_dnst_plot_png
doc: |
UMI per cell density (filtered).
PNG format
fltr_gene_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_gene_dnst_plot_png
doc: |
Genes per cell density (filtered).
PNG format
fltr_gene_umi_corr_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_gene_umi_corr_plot_png
doc: |
Genes vs UMI per cell correlation (filtered).
PNG format
fltr_mito_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_mito_dnst_plot_png
doc: |
Percentage of transcripts mapped to mitochondrial genes per cell density (filtered).
PNG format
fltr_nvlt_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_nvlt_dnst_plot_png
doc: |
Novelty score per cell density (filtered).
PNG format
fltr_qc_mtrcs_dnst_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_qc_mtrcs_dnst_plot_png
doc: |
QC metrics per cell density (filtered).
PNG format
fltr_umi_dnst_spl_cnd_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_umi_dnst_spl_cnd_plot_png
doc: |
Split by grouping condition UMI per cell density (filtered).
PNG format
fltr_gene_dnst_spl_cnd_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_gene_dnst_spl_cnd_plot_png
doc: |
Split by grouping condition genes per cell density (filtered).
PNG format
fltr_mito_dnst_spl_cnd_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_mito_dnst_spl_cnd_plot_png
doc: |
Split by grouping condition the percentage of transcripts mapped
to mitochondrial genes per cell density (filtered).
PNG format
fltr_nvlt_dnst_spl_cnd_plot_png:
type: File?
outputSource: sc_rna_filter/fltr_nvlt_dnst_spl_cnd_plot_png
doc: |
Split by grouping condition the novelty score per cell density (filtered).
PNG format
sc_rna_filter_stdout_log:
type: File
outputSource: sc_rna_filter/stdout_log
doc: |
stdout log generated by sc_rna_filter step
sc_rna_filter_stderr_log:
type: File
outputSource: sc_rna_filter/stderr_log
doc: |
stderr log generated by sc_rna_filter step
elbow_plot_png:
type: File?
outputSource: sc_rna_reduce/elbow_plot_png
doc: |
Elbow plot (from cells PCA).
PNG format
qc_dim_corr_plot_png:
type: File?
outputSource: sc_rna_reduce/qc_dim_corr_plot_png
doc: |
Correlation plots between QC metrics and cells PCA components.
PNG format
umap_qc_mtrcs_plot_png:
type: File?
outputSource: sc_rna_reduce/umap_qc_mtrcs_plot_png
doc: |
QC metrics on cells UMAP.
PNG format
umap_spl_mito_plot_png:
type: File?
outputSource: sc_rna_reduce/umap_spl_mito_plot_png
doc: |
Split by the percentage of transcripts mapped to mitochondrial genes cells UMAP.
PNG format
umap_spl_umi_plot_png:
type: File?
outputSource: sc_rna_reduce/umap_spl_umi_plot_png
doc: |
Split by the UMI per cell counts cells UMAP.
PNG format
umap_spl_gene_plot_png:
type: File?
outputSource: sc_rna_reduce/umap_spl_gene_plot_png
doc: |
Split by the genes per cell counts cells UMAP.
PNG format
umap_gr_cnd_spl_ph_plot_png:
type: File?
outputSource: sc_rna_reduce/umap_gr_cnd_spl_ph_plot_png
doc: |
Grouped by condition split by cell cycle cells UMAP.
PNG format
umap_gr_cnd_spl_mito_plot_png:
type: File?
outputSource: sc_rna_reduce/umap_gr_cnd_spl_mito_plot_png
doc: |
Grouped by condition split by the percentage of transcripts mapped to mitochondrial genes cells UMAP.
PNG format
umap_gr_cnd_spl_umi_plot_png:
type: File?
outputSource: sc_rna_reduce/umap_gr_cnd_spl_umi_plot_png
doc: |
Grouped by condition split by the UMI per cell counts cells UMAP.
PNG format
umap_gr_cnd_spl_gene_plot_png:
type: File?
outputSource: sc_rna_reduce/umap_gr_cnd_spl_gene_plot_png
doc: |
Grouped by condition split by the genes per cell counts cells UMAP.
PNG format
sc_rna_reduce_stdout_log:
type: File
outputSource: sc_rna_reduce/stdout_log
doc: |
stdout log generated by sc_rna_reduce step
sc_rna_reduce_stderr_log:
type: File
outputSource: sc_rna_reduce/stderr_log
doc: |
stderr log generated by sc_rna_reduce step
umap_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/umap_res_plot_png
doc: |
Clustered cells UMAP.
PNG format
slh_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/slh_res_plot_png
doc: |
Silhouette scores. Downsampled to max 500 cells per cluster.
PNG format
umap_spl_idnt_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/umap_spl_idnt_res_plot_png
doc: |
Split by dataset clustered cells UMAP.
PNG format
cmp_gr_clst_spl_idnt_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/cmp_gr_clst_spl_idnt_res_plot_png
doc: |
Grouped by cluster split by dataset cells composition plot. Downsampled.
PNG format
cmp_gr_idnt_spl_clst_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/cmp_gr_idnt_spl_clst_res_plot_png
doc: |
Grouped by dataset split by cluster cells composition plot. Downsampled.
PNG format
umap_spl_cnd_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/umap_spl_cnd_res_plot_png
doc: |
Split by grouping condition clustered cells UMAP.
PNG format
cmp_gr_clst_spl_cnd_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/cmp_gr_clst_spl_cnd_res_plot_png
doc: |
Grouped by cluster split by condition cells composition plot. Downsampled.
PNG format
cmp_gr_cnd_spl_clst_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/cmp_gr_cnd_spl_clst_res_plot_png
doc: |
Grouped by condition split by cluster cells composition plot. Downsampled.
PNG format
umap_spl_ph_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/umap_spl_ph_res_plot_png
doc: |
Split by cell cycle phase clustered cells UMAP.
PNG format
cmp_gr_ph_spl_idnt_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/cmp_gr_ph_spl_idnt_res_plot_png
doc: |
Grouped by cell cycle phase split by dataset cells composition plot. Downsampled.
PNG format
cmp_gr_ph_spl_clst_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/cmp_gr_ph_spl_clst_res_plot_png
doc: |
Grouped by cell cycle phase split by cluster cells composition plot. Downsampled.
PNG format
xpr_avg_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/xpr_avg_res_plot_png
doc: |
Log normalized scaled average gene expression per cluster.
PNG format
xpr_per_cell_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/xpr_per_cell_res_plot_png
doc: |
Log normalized gene expression on cells UMAP.
PNG format
xpr_per_cell_sgnl_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/xpr_per_cell_sgnl_res_plot_png
doc: |
Log normalized gene expression density on cells UMAP.
PNG format
xpr_dnst_res_plot_png:
type:
- "null"
- type: array
items: File
outputSource: sc_rna_cluster/xpr_dnst_res_plot_png
doc: |
Log normalized gene expression density per cluster.
PNG format
gene_markers_tsv:
type: File?
outputSource: sc_rna_cluster/gene_markers_tsv
doc: |
Differentially expressed genes between each pair of clusters for all resolutions.
TSV format
ucsc_cb_html_data:
type: Directory?
outputSource: sc_rna_cluster/ucsc_cb_html_data
doc: |
Directory with UCSC Cellbrowser html data.
seurat_data_rds:
type: File
outputSource: sc_rna_cluster/seurat_data_rds
doc: |
Processed Seurat data in RDS format
seurat_data_h5ad:
type: File?
outputSource: sc_rna_cluster/seurat_data_h5ad
doc: |
Reduced Seurat data in h5ad format
sc_rna_cluster_stdout_log:
type: File
outputSource: sc_rna_cluster/stdout_log
doc: |
stdout log generated by sc_rna_cluster step
sc_rna_cluster_stderr_log:
type: File
outputSource: sc_rna_cluster/stderr_log
doc: |
stderr log generated by sc_rna_cluster step
steps:
uncompress_feature_bc_matrices:
doc: |
Extracts the content of TAR file into a folder
run: ../tools/tar-extract.cwl
in:
file_to_extract: feature_bc_matrices_folder
out:
- extracted_folder
sc_rna_filter:
doc: |
Filters single-cell RNA-Seq datasets based on the common QC metrics
run: ../tools/sc-rna-filter.cwl
in:
feature_bc_matrices_folder: uncompress_feature_bc_matrices/extracted_folder
aggregation_metadata: aggregation_metadata
grouping_data: grouping_data
barcodes_data: barcodes_data
rna_minimum_cells: rna_minimum_cells
minimum_genes: minimum_genes
maximum_genes: maximum_genes
rna_minimum_umi: rna_minimum_umi
minimum_novelty_score: minimum_novelty_score
mito_pattern: mito_pattern
maximum_mito_perc: maximum_mito_perc
output_prefix:
default: "s_1"
parallel_memory_limit: parallel_memory_limit
vector_memory_limit: vector_memory_limit
threads: threads
out:
- raw_1_2_qc_mtrcs_pca_plot_png
- raw_2_3_qc_mtrcs_pca_plot_png
- raw_cells_count_plot_png
- raw_umi_dnst_plot_png
- raw_gene_dnst_plot_png
- raw_gene_umi_corr_plot_png
- raw_mito_dnst_plot_png
- raw_nvlt_dnst_plot_png
- raw_qc_mtrcs_dnst_plot_png
- raw_umi_dnst_spl_cnd_plot_png
- raw_gene_dnst_spl_cnd_plot_png
- raw_mito_dnst_spl_cnd_plot_png
- raw_nvlt_dnst_spl_cnd_plot_png
- fltr_1_2_qc_mtrcs_pca_plot_png
- fltr_2_3_qc_mtrcs_pca_plot_png
- fltr_cells_count_plot_png
- fltr_umi_dnst_plot_png
- fltr_gene_dnst_plot_png
- fltr_gene_umi_corr_plot_png
- fltr_mito_dnst_plot_png
- fltr_nvlt_dnst_plot_png
- fltr_qc_mtrcs_dnst_plot_png
- fltr_umi_dnst_spl_cnd_plot_png
- fltr_gene_dnst_spl_cnd_plot_png
- fltr_mito_dnst_spl_cnd_plot_png
- fltr_nvlt_dnst_spl_cnd_plot_png
- seurat_data_rds
- stdout_log
- stderr_log
sc_rna_reduce:
doc: |
Integrates multiple single-cell RNA-Seq datasets,
reduces dimensionality using PCA
run: ../tools/sc-rna-reduce.cwl
in:
query_data_rds: sc_rna_filter/seurat_data_rds
cell_cycle_data: cell_cycle_data
normalization_method:
default: "sctglm"
integration_method:
default: "seurat"
highly_var_genes_count: highly_var_genes_count
regress_mito_perc: regress_mito_perc
regress_cellcycle: regress_cellcycle
dimensions: dimensions
low_memory:
default: true
output_prefix:
default: "s_2"
parallel_memory_limit: parallel_memory_limit
vector_memory_limit: vector_memory_limit
threads: threads
out:
- elbow_plot_png
- qc_dim_corr_plot_png
- umap_qc_mtrcs_plot_png
- umap_spl_mito_plot_png
- umap_spl_umi_plot_png
- umap_spl_gene_plot_png
- umap_gr_cnd_spl_ph_plot_png
- umap_gr_cnd_spl_mito_plot_png
- umap_gr_cnd_spl_umi_plot_png
- umap_gr_cnd_spl_gene_plot_png
- seurat_data_rds
- stdout_log
- stderr_log
sc_rna_cluster:
doc: |
Clusters single-cell RNA-Seq datasets, identifies gene markers
run: ../tools/sc-rna-cluster.cwl
in:
query_data_rds: sc_rna_reduce/seurat_data_rds
dimensions: dimensions
resolution: resolution
genes_of_interest: genes_of_interest
identify_diff_genes:
default: true
minimum_logfc: minimum_logfc
minimum_pct: minimum_pct
only_positive_diff_genes:
default: true
export_ucsc_cb:
default: true
export_h5ad_data:
default: true
output_prefix:
default: "s_3"
parallel_memory_limit: parallel_memory_limit
vector_memory_limit: vector_memory_limit
threads: threads
out:
- umap_res_plot_png
- slh_res_plot_png
- umap_spl_idnt_res_plot_png
- cmp_gr_clst_spl_idnt_res_plot_png
- cmp_gr_idnt_spl_clst_res_plot_png
- umap_spl_cnd_res_plot_png
- cmp_gr_clst_spl_cnd_res_plot_png
- cmp_gr_cnd_spl_clst_res_plot_png
- umap_spl_ph_res_plot_png
- cmp_gr_ph_spl_idnt_res_plot_png
- cmp_gr_ph_spl_clst_res_plot_png
- xpr_avg_res_plot_png
- xpr_per_cell_res_plot_png
- xpr_per_cell_sgnl_res_plot_png
- xpr_dnst_res_plot_png
- gene_markers_tsv
- ucsc_cb_html_data
- seurat_data_rds
- seurat_data_h5ad
- stdout_log
- stderr_log
$namespaces:
s: http://schema.org/
$schemas:
- https://github.com/schemaorg/schemaorg/raw/main/data/releases/11.01/schemaorg-current-http.rdf
label: "Single-cell RNA-Seq Analyze"
s:name: "Single-cell RNA-Seq Analyze"
s:alternateName: |
Runs filtering, normalization, scaling, integration (optionally) and
clustering for a single or aggregated single-cell RNA-Seq datasets
s:downloadUrl: https://raw.githubusercontent.com/Barski-lab/sc-seq-analysis/main/workflows/sc-rna-analyze.cwl
s:codeRepository: https://github.com/Barski-lab/sc-seq-analysis
s:license: http://www.apache.org/licenses/LICENSE-2.0
s:isPartOf:
class: s:CreativeWork
s:name: Common Workflow Language
s:url: http://commonwl.org/
s:creator:
- class: s:Organization
s:legalName: "Cincinnati Children's Hospital Medical Center"
s:location:
- class: s:PostalAddress
s:addressCountry: "USA"
s:addressLocality: "Cincinnati"
s:addressRegion: "OH"
s:postalCode: "45229"
s:streetAddress: "3333 Burnet Ave"
s:telephone: "+1(513)636-4200"
s:logo: "https://www.cincinnatichildrens.org/-/media/cincinnati%20childrens/global%20shared/childrens-logo-new.png"
s:department:
- class: s:Organization
s:legalName: "Allergy and Immunology"
s:department:
- class: s:Organization
s:legalName: "Barski Research Lab"
s:member:
- class: s:Person
s:name: Michael Kotliar
s:email: mailto:[email protected]
s:sameAs:
- id: http://orcid.org/0000-0002-6486-3898
doc: |
Single-cell RNA-Seq Analyze
Runs filtering, normalization, scaling, integration (optionally) and
clustering for a single or aggregated single-cell RNA-Seq datasets.