-
Notifications
You must be signed in to change notification settings - Fork 0
/
in-train.py
293 lines (244 loc) · 12.6 KB
/
in-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from dataset import *
from model import *
from utils import *
from evaluation import *
import argparse
from tqdm import tqdm
from torch import tensor
import warnings
warnings.filterwarnings('ignore')
import math
os.environ['CUDA_VISIBLE_DEVICES'] = '6'
from torch.optim.lr_scheduler import ExponentialLR
import time
from memory_profiler import memory_usage
class MLP(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
def reset_parameters(self):
self.fc1.reset_parameters()
self.fc2.reset_parameters()
self.fc3.reset_parameters()
def run(data, args):
pbar = tqdm(range(args.runs), unit='run')
criterion = nn.BCELoss()
acc, f1, auc_roc, parity, equality = np.zeros(args.runs), np.zeros(
args.runs), np.zeros(args.runs), np.zeros(args.runs), np.zeros(args.runs)
data = data.to(args.device)
discriminator = MLP_discriminator(args).to(args.device)
optimizer_d = torch.optim.Adam([
dict(params=discriminator.lin.parameters(), weight_decay=args.d_wd)], lr=args.d_lr)
classifier = MLP_classifier(args).to(args.device)
optimizer_c = torch.optim.Adam([
dict(params=classifier.lin.parameters(), weight_decay=args.c_wd)], lr=args.c_lr)
if(args.encoder == 'MLP'):
encoder = MLP_encoder(args).to(args.device)
optimizer_e = torch.optim.Adam([
dict(params=encoder.lin.parameters(), weight_decay=args.e_wd)], lr=args.e_lr)
elif(args.encoder == 'GCN'):
if args.prop == 'scatter':
encoder = GCN_encoder_scatter(args).to(args.device)
else:
encoder = GCN_encoder_spmm(args).to(args.device)
optimizer_e = torch.optim.Adam([
dict(params=encoder.lin.parameters(), weight_decay=args.e_wd),
dict(params=encoder.bias, weight_decay=args.e_wd)], lr=args.e_lr)
elif(args.encoder == 'GIN'):
encoder = GIN_encoder(args).to(args.device)
optimizer_e = torch.optim.Adam([
dict(params=encoder.conv.parameters(), weight_decay=args.e_wd)], lr=args.e_lr)
elif(args.encoder == 'SAGE'):
encoder = SAGE_encoder(args).to(args.device)
optimizer_e = torch.optim.Adam([
dict(params=encoder.conv1.parameters(), weight_decay=args.e_wd),
dict(params=encoder.conv2.parameters(), weight_decay=args.e_wd)], lr=args.e_lr)
# examine if the file exists
if os.path.isfile(args.dataset+'_hadj.pt'):
print('########## sample already done #############')
# load data
new_adj = torch.load(args.dataset+'_hadj.pt')
else:
# pretrain neighbor predictor
data.adj = data.adj - sp.eye(data.adj.shape[0])
# neighbor select
print('sample begin.')
# compute heterogeneous neighbor
new_adj = torch.zeros((data.adj.shape[0], data.adj.shape[0])).int()
for i in tqdm(range(data.adj.shape[0])):
# get all the neighbor nodes' index of node i
neighbor = torch.tensor(data.adj[i].nonzero()).to(args.device)
# filter out all the neighbor nodes with different sensitive atrribute from node i
mask = (data.sens[neighbor[1]] != data.sens[i])
h_nei_idx = neighbor[1][mask]
new_adj[i, h_nei_idx] = 1
print('select done.')
# save data
torch.save(new_adj, args.dataset+'_hadj.pt')
c_X = data.x
new_adj = new_adj.cpu()
# compute degree matrix and heterogeneous neighbor's feature
deg = np.sum(new_adj.numpy(), axis=1)
deg = torch.from_numpy(deg).cpu()
indices = torch.nonzero(new_adj)
values = new_adj[indices[:, 0], indices[:, 1]]
mat = torch.sparse_coo_tensor(indices.t(), values, new_adj.shape).float().cpu()
h_X = torch.spmm(mat,(data.x).cpu()) / deg.unsqueeze(-1)
# examine if any row contains NaN
mask = torch.any(torch.isnan(h_X), dim=1)
# delete rows containing NaN
h_X = h_X[~mask].to(args.device)
c_X = c_X[~mask].to(args.device)
print('node avg degree:',data.edge_index.shape[1]/data.adj.shape[0],' heteroneighbor degree mean:',deg.float().mean(),' node without heteroneghbor:',(deg == 0).sum())
deg_norm = deg
deg_norm[deg_norm == 0] = 1
deg_norm = deg_norm.to(args.device)
model = MLP(len(data.x[0]),args.hidden,len(data.x[0])).to(args.device)
optimizer = torch.optim.Adam([
dict(params=model.parameters(), weight_decay=0.001)], lr=args.m_lr)
from sklearn.model_selection import train_test_split
indices = np.arange(c_X.shape[0]) # help for check the index after split
[indices_train, indices_test, y_train, y_test] = train_test_split(indices, indices, test_size=0.1)
X_train, X_test, y_train, y_test = c_X[indices_train], c_X[indices_test], h_X[indices_train], h_X[indices_test]
for count in pbar:
seed_everything(count + args.seed)
discriminator.reset_parameters()
classifier.reset_parameters()
encoder.reset_parameters()
model.reset_parameters()
best_val_tradeoff = 0
best_val_loss = math.inf
for epoch in range(0, args.epochs):
# train mlp
for m_epoch in range(0, args.m_epoch):
model.train() # prep model for training
# train the model #
optimizer.zero_grad()
output = model(X_train)
train_loss = torch.nn.functional.mse_loss(output, y_train)
# backward pass: compute gradient of the loss with respect to model parameters
train_loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update running training loss
model.eval()
output = model(X_test)
valid_loss = torch.nn.functional.mse_loss(output, y_test)
# output = pre_discriminator(output)
# loss_d = criterion(output.view(-1),data.sens[indices_test].to(torch.float))
# valid_loss += loss_d
if valid_loss < best_val_loss:
best_val_loss = valid_loss
best_mlp_state = model.state_dict()
# if m_epoch % 5 == 0:
# print('Epoch: {} \tTraining Loss: {:.6f}\tValidation Loss:{:.6f}'.format(
# m_epoch,
# train_loss,
# valid_loss
# ))
model.load_state_dict(best_mlp_state)
model.eval()
# train classifier
classifier.train()
encoder.train()
for epoch_c in range(0, args.c_epochs):
optimizer_c.zero_grad()
optimizer_e.zero_grad()
h = encoder(data.x + args.delta * model(data.x), data.edge_index, data.adj_norm_sp)
output = classifier(h)
loss_c = F.binary_cross_entropy_with_logits(
output[data.train_mask], data.y[data.train_mask].unsqueeze(1).to(args.device))
loss_c.backward()
optimizer_e.step()
optimizer_c.step()
if args.d == 'yes':
# train discriminator to recognize the sensitive group
discriminator.train()
encoder.train()
for epoch_d in range(0, args.d_epochs):
optimizer_d.zero_grad()
optimizer_e.zero_grad()
optimizer.zero_grad()
h = encoder(data.x + args.delta * model(data.x), data.edge_index, data.adj_norm_sp)
output = discriminator(h)
loss_d = criterion(output.view(-1),
data.x[:, args.sens_idx])
loss_d.backward()
optimizer_d.step()
optimizer_e.step()
optimizer.step()
# evaluate classifier
accs, auc_rocs, F1s, tmp_parity, tmp_equality = evaluate(
data.x, classifier, discriminator, encoder, data, args)
# print('*****************')
# print(epoch, 'Acc:', accs['val'], 'AUC_ROC:', auc_rocs['val'], 'F1:', F1s['val'],
# 'Parity:', tmp_parity['val'], 'Equality:', tmp_equality['val'],'tradeoff:',auc_rocs['val']+F1s['val'] + accs['val'] - args.alpha * (tmp_parity['val'] + tmp_equality['val']))
print(epoch, 'Acc:', accs['test'], 'F1:', F1s['test'],
'Parity:', tmp_parity['test'], 'Equality:', tmp_equality['test'],'tradeoff:',auc_rocs['test']+ F1s['test'] + accs['test'] - args.alpha * (tmp_parity['test'] + tmp_equality['test']))
# if auc_rocs['val'] + F1s['val'] + accs['val'] - args.alpha * (tmp_parity['val'] + tmp_equality['val']) > best_val_tradeoff:
# test_acc = accs['test']
# test_auc_roc = auc_rocs['test']
# test_f1 = F1s['test']
# test_parity, test_equality = tmp_parity['test'], tmp_equality['test']
# best_val_tradeoff = auc_rocs['val'] + F1s['val'] + \
# accs['val'] - (tmp_parity['val'] + tmp_equality['val'])
if auc_rocs['val'] + F1s['val'] + accs['val'] - args.alpha * (tmp_parity['val'] + tmp_equality['val']) > best_val_tradeoff:
test_acc = accs['test']
test_auc_roc = auc_rocs['test']
test_f1 = F1s['test']
test_parity, test_equality = tmp_parity['test'], tmp_equality['test']
print('best_val_tradeoff',epoch)
best_val_tradeoff = auc_rocs['val'] + F1s['val'] + accs['val'] - args.alpha * (tmp_parity['val'] + tmp_equality['val'])
acc[count] = test_acc
f1[count] = test_f1
auc_roc[count] = test_auc_roc
parity[count] = test_parity
equality[count] = test_equality
return acc, f1, auc_roc, parity, equality
if __name__ == '__main__':
# start_time = time.time()
# mem_usage = memory_usage()[0]
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='german')
parser.add_argument('--runs', type=int, default=5)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--d_epochs', type=int, default=5)
parser.add_argument('--c_epochs', type=int, default=10)
parser.add_argument('--d_lr', type=float, default=0.01)
parser.add_argument('--d_wd', type=float, default=0)
parser.add_argument('--c_lr', type=float, default=0.01)
parser.add_argument('--c_wd', type=float, default=0)
parser.add_argument('--e_lr', type=float, default=0.01)
parser.add_argument('--e_wd', type=float, default=0)
parser.add_argument('--prop', type=str, default='scatter')
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--hidden', type=int, default=16)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--encoder', type=str, default='GIN')
parser.add_argument('--alpha', type=float, default=1)
parser.add_argument('--delta', type=float, default=5)
parser.add_argument('--m_epoch', type=int, default=20)
parser.add_argument('--d', type=str, default='no')
parser.add_argument('--m_lr', type=float, default=0.1)
args = parser.parse_args()
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data, args.sens_idx, args.x_min, args.x_max = get_dataset(args.dataset)
args.num_features, args.num_classes = data.x.shape[1], 2-1 # binary classes are 0,1
acc, f1, auc_roc, parity, equality = run(data, args)
# end_time = time.time()
# max_mem_usage = max(memory_usage()) - mem_usage
# run_time = end_time - start_time
print('======' + args.dataset + args.encoder + '======')
print('Acc:', round(np.mean(acc) * 100,2), '±' ,round(np.std(acc) * 100,2), sep='')
print('f1:', round(np.mean(f1) * 100,2), '±' ,round(np.std(f1) * 100,2), sep='')
print('parity:', round(np.mean(parity) * 100,2), '±', round(np.std(parity) * 100,2), sep='')
print('equality:', round(np.mean(equality) * 100,2), '±', round(np.std(equality) * 100,2), sep='')
# print('run time {} s'.format(run_time))
# print('max memory usage {} MB'.format(max_mem_usage))