forked from ROCm/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
examples_test.py
69 lines (52 loc) · 2.04 KB
/
examples_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import zlib
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import jax
from jax import random
import jax.numpy as jnp
from jax._src import test_util as jtu
del jtu # Needed for flags
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from examples import kernel_lsq
sys.path.pop()
jax.config.parse_flags_with_absl()
def _CheckShapeAgreement(test_case, init_fun, apply_fun, input_shape):
jax_rng = random.key(0)
result_shape, params = init_fun(jax_rng, input_shape)
result = apply_fun(params, test_case.rng.normal(size=input_shape).astype("float32"))
test_case.assertEqual(result.shape, result_shape)
class ExamplesTest(parameterized.TestCase):
def setUp(self):
self.rng = np.random.default_rng(zlib.adler32(self.__class__.__name__.encode()))
def testKernelRegressionGram(self):
n, d = 100, 20
xs = self.rng.normal(size=(n, d))
kernel = lambda x, y: jnp.dot(x, y)
np.testing.assert_allclose(kernel_lsq.gram(kernel, xs), jnp.dot(xs, xs.T), atol=1E-5)
@jax.default_matmul_precision("float32")
def testKernelRegressionTrainAndPredict(self):
n, d = 100, 20
truth = self.rng.normal(size=d)
xs = self.rng.normal(size=(n, d))
ys = jnp.dot(xs, truth)
kernel = lambda x, y: jnp.dot(x, y)
predict = kernel_lsq.train(kernel, xs, ys)
np.testing.assert_allclose(predict(xs), ys, atol=1e-3, rtol=1e-3)
if __name__ == "__main__":
absltest.main()