forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_cpp_serving_client.py
51 lines (43 loc) · 1.65 KB
/
test_cpp_serving_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import time
from paddle_serving_client import Client
def bytes_to_base64(image: bytes) -> str:
"""encode bytes into base64 string
"""
return base64.b64encode(image).decode('utf8')
client = Client()
client.load_client_config("./ResNet50_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
label_dict[label_idx] = line.strip()
label_idx += 1
image_file = "./daisy.jpg"
for i in range(1):
start = time.time()
with open(image_file, 'rb') as img_file:
image_data = img_file.read()
image = bytes_to_base64(image_data)
fetch_dict = client.predict(
feed={"inputs": image}, fetch=["prediction"], batch=False)
prob = max(fetch_dict["prediction"][0])
label = label_dict[fetch_dict["prediction"][0].tolist().index(
prob)].strip().replace(",", "")
print("prediction: {}, probability: {}".format(label, prob))
end = time.time()
print(end - start)