-
Notifications
You must be signed in to change notification settings - Fork 0
/
Example_MovieLens.py
49 lines (35 loc) · 1.75 KB
/
Example_MovieLens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# -*- coding: utf-8 -*-
__author__ = 'Solange'
import pandas as pd
# Load users info
userHeader = ['user_id', 'gender', 'age', 'ocupation', 'zip']
users = pd.read_csv('dataSet/users.txt', engine='python',
sep='::', header=None, names=userHeader)
# print 10 first users
print('# 10 first users: \n%s' % users[:10])
print('\n==================================================================\n')
# Load ratings
ratingHeader = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings = pd.read_csv('dataSet/ratings.txt', engine='python',
sep='::', header=None, names=ratingHeader)
# Example 1: merge tables users + ratings by user_id field
merger_ratings_users = pd.merge(users, ratings)
print('# Merge tables users + ratings by user_id field \n%s' %
merger_ratings_users[:10])
print('\n==================================================================\n')
# Load movie info
movieHeader = ['movie_id', 'title', 'genders']
movies = pd.read_csv('dataSet/movies.txt', engine='python',
sep='::', header=None, names=movieHeader)
# Example 2: merge ratings + users + movies
merge_ratings = pd.merge(pd.merge(users, ratings), movies)
print('# Merge tables ratings + users + movies by user_id and movie_id fields \n%s' %
merge_ratings[:10])
print('\n==================================================================\n')
# Example 3: Info about specific position (ejem: position 1000)
info1000 = merge_ratings.ix[1000]
print('Info of 1000 position of the table: \n%s' % info1000[:10])
print('\n==================================================================\n')
# Example 4: show specific columns
ratings_info = merge_ratings[['user_id', 'title', 'rating']]
print('Show specific columns: \n%s' % ratings_info[:10])