The code of "Graph-based Dependency Parsing with Graph Neural Networks".
An example of experiment log.
PTB-UAS | PTB-LAS |
---|---|
96.0455 | 94.3539 |
$ cd src
$ python train.py --config_file ../configs/default.cfg --name ACL19(your experiment name) --gpu 0(your gpu id)
Before triggering the subcommands, please make sure that the data files must be in CoNLL-U format. Here is an example.
$ cat data/dev.debug
1 Influential _ JJ JJ _ 2 amod _ _
2 members _ NNS NNS _ 10 nsubj _ _
3 of _ IN IN _ 2 prep _ _
4 the _ DT DT _ 6 det _ _
5 House _ NNP NNP _ 6 nn _ _
6 Ways _ NNP NNP _ 3 pobj _ _
7 and _ CC CC _ 6 cc _ _
8 Means _ NNP NNP _ 9 nn _ _
9 Committee _ NNP NNP _ 6 conj _ _
10 introduced _ VBD VBD _ 0 root _ _
11 legislation _ NN NN _ 10 dobj _ _
12 that _ WDT WDT _ 14 nsubj _ _
13 would _ MD MD _ 14 aux _ _
14 restrict _ VB VB _ 11 rcmod _ _
15 how _ WRB WRB _ 22 advmod _ _
16 the _ DT DT _ 20 det _ _
17 new _ JJ JJ _ 20 amod _ _
18 savings-and-loan _ NN JJ _ 20 nn _ _
19 bailout _ NN NN _ 20 nn _ _
20 agency _ NN NN _ 22 nsubj _ _
21 can _ MD MD _ 22 aux _ _
22 raise _ VB VB _ 14 ccomp _ _
23 capital _ NN NN _ 22 dobj _ _
24 , _ , , _ 14 punct _ _
25 creating _ VBG VBG _ 14 xcomp _ _
26 another _ DT DT _ 28 det _ _
27 potential _ JJ JJ _ 28 amod _ _
28 obstacle _ NN NN _ 25 dobj _ _
29 to _ TO TO _ 28 prep _ _
30 the _ DT DT _ 31 det _ _
31 government _ NN NN _ 33 poss _ _
32 's _ POS POS _ 31 possessive _ _
33 sale _ NN NN _ 29 pobj _ _
34 of _ IN IN _ 33 prep _ _
35 sick _ JJ JJ _ 36 amod _ _
36 thrifts _ NNS NNS _ 34 pobj _ _
37 . _ . . _ 10 punct _ _
$ cd src
$ python predict.py --config_file ../configs/default.cfg --name PTB-Out(your experiment name) --gpu 0(your gpu id)
If you find our code is useful, please cite:
@inproceedings{ji-etal-2019-graph,
title = "Graph-based Dependency Parsing with Graph Neural Networks",
author = "Ji, Tao and
Wu, Yuanbin and
Lan, Man",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1237",
doi = "10.18653/v1/P19-1237",
pages = "2475--2485",
}