Skip to content

Latest commit

 

History

History
99 lines (87 loc) · 4.67 KB

README.md

File metadata and controls

99 lines (87 loc) · 4.67 KB

To implement a correct Transformer Encoder-Decoder model, we can refer to some resources:

  1. Transformer paper: Attention Is All You Need
  2. Pytorch Implementation
  3. HuggingFace Implementation: BERT for Encoder & BART for Enc-Dec

In this project, we give the basic definition of the Transformer network (specifying the required classes and the calling logic between them). You can freely modify the definition with knowledge of the context. To build a generic Transformer we need to implement the following classes:

The tree logic between classes is as follows:

├── XformerEncoder
│   ├── SelfAttentionSublayer
│   │   ├── MultiHeadAttention
│   ├── FeedforwardSublayer
├── XformerDecoder
│   ├── SelfAttentionSublayer
│   │   ├── MultiHeadAttention
│   ├── CrossAttentionSublayer
│   │   ├── MultiHeadAttention
│   ├── FeedforwardSublayer
├── LearnableEmbeddings
├── SinusoidalEmbeddings

To obtain the output of a reproduced Transformer, we can define a randomly initialized BERT (Encoder) or BART (Enc-Dec). Take BERT as an example:

├── BertModel
│   ├── BERTEmbeddings
│   │   ├── LearnableEmbeddings
│   │   └── SinusoidalEmbeddings
│   ├── XformerEncoder
│   │   ├── SelfAttentionSublayer
│   │   │   ├── MultiHeadAttention
│   │   ├── FeedforwardSublayer
│   ├── BERTMLMHead (Optional)
│   ├── BERTNSPHead (Optional)
# Step 1: Set the Random Seed in the program entry 
# earlier is better
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)

# Step 2: Load BERT hyperparameters
from transformers import AutoTokenizer, AutoConfig
config = AutoConfig.from_pretrained(os.environ['TRANSFORMERS_CACHE']+'bert-base')   # 'bart-base'

# Step 3: Define our BERT
from bert_model import BertModel
our_bert = BertModel(
    vocab_size = config.vocab_size,
    hidden_size = config.hidden_size,
    ...
    ...
)

# Step 4: Get the model output without dropout
our_bert.eval()
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
last_hidden_states, _, _ = our_bert(**inputs)

By referring to the hugging face implementation, we could confirm that we have implemented the Transformer Encoder-Decoder model correctly. Check that our output is consistent with the BERT/BART output ( last_hidden_states in the code below).

# Step 1: Set the Random Seed in the program entry 
# IMPORTANT! SEED must be the same as ours!
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)

# Step 2: Define a randomly initialized BART model
from transformers import AutoTokenizer, AutoConfig, AutoModel

config = AutoConfig.from_pretrained(os.environ['TRANSFORMERS_CACHE']+'bert-base')   # 'bart-base'
model = AutoModel.from_config(config)
tokenizer = AutoTokenizer.from_pretrained(os.environ['TRANSFORMERS_CACHE']+'bert-base')  # 'bart-base'

# Step 3: Get the model output without dropout
model.eval()
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state