-
Notifications
You must be signed in to change notification settings - Fork 2
/
SpeechModel.py
113 lines (88 loc) · 4.13 KB
/
SpeechModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import tensorflow as tf
from tensorflow.keras import layers as L
from tensorflow.keras import Model
class SpeechModel:
def __init__(self, num_output_classes) -> None:
self.num_output_classes = num_output_classes
def getRAVDESS(self) -> Model:
"""Returns a tensorflow model that is according to specifications of the baseline CNN model in the paper."""
input_layer = L.Input(shape=(193, 1))
cnn1 = L.Conv1D(256, (5))(input_layer)
batch_norm1 = L.BatchNormalization()(cnn1)
relu1 = L.ReLU()(batch_norm1)
cnn2 = L.Conv1D(128, (5))(relu1)
relu2 = L.ReLU()(cnn2)
dropout1 = L.Dropout(0.1)(relu2)
batch_norm2 = L.BatchNormalization()(dropout1)
max_pool1 = L.MaxPool1D(8)(batch_norm2)
conv3 = L.Conv1D(128, (5))(max_pool1)
relu3 = L.ReLU()(conv3)
conv4 = L.Conv1D(128, (5))(relu3)
relu4 = L.ReLU()(conv4)
conv5 = L.Conv1D(128, (5))(relu4)
batch_norm4 = L.BatchNormalization()(conv5)
relu5 = L.ReLU()(batch_norm4)
dropout2 = L.Dropout(0.2)(relu5)
conv6 = L.Conv1D(128, (5))(dropout2)
flatten = L.Flatten()(conv6)
dropout3 = L.Dropout(0.2)(flatten)
output_logits = L.Dense(self.num_output_classes)(dropout3)
batch_norm5 = L.BatchNormalization()(output_logits)
softmax = L.Softmax()(batch_norm5)
model = Model(inputs=[input_layer], outputs=[softmax])
optimizer = tf.keras.optimizers.RMSprop(1e-5)
loss = tf.keras.losses.SparseCategoricalCrossentropy()
model.compile(optimizer=optimizer, loss=loss)
return model
def getEmoDB(self) -> Model:
"""Returns a tensorflow model that is according to specifications of the EmoDB model A in the paper."""
input_layer = L.Input(shape=(193, 1))
cnn1 = L.Conv1D(256, (5))(input_layer)
batch_norm1 = L.BatchNormalization()(cnn1)
relu1 = L.ReLU()(batch_norm1)
cnn2 = L.Conv1D(128, (5))(relu1)
relu2 = L.ReLU()(cnn2)
dropout1 = L.Dropout(0.1)(relu2)
max_pool1 = L.MaxPool1D(8)(dropout1)
conv3 = L.Conv1D(128, (5))(max_pool1)
batch_norm2 = L.BatchNormalization()(conv3)
relu3 = L.ReLU()(batch_norm2)
dropout2 = L.Dropout(0.2)(relu3)
flatten = L.Flatten()(dropout2)
output_logits = L.Dense(self.num_output_classes)(flatten)
softmax = L.Softmax()(output_logits)
model = Model(inputs=[input_layer], outputs=[softmax])
optimizer = tf.keras.optimizers.RMSprop(1e-5)
loss = tf.keras.losses.SparseCategoricalCrossentropy()
model.compile(optimizer=optimizer, loss=loss)
return model
def getIEMOCAP(self) -> Model:
"""Returns a model that is same as EmoDB model in most senses, except dropout value before MaxPool layer is increased and model is compiled with Adam optimizer instead."""
input_layer = L.Input(shape=(193, 1))
cnn1 = L.Conv1D(256, (5))(input_layer)
batch_norm1 = L.BatchNormalization()(cnn1)
relu1 = L.ReLU()(batch_norm1)
cnn2 = L.Conv1D(128, (5))(relu1)
relu2 = L.ReLU()(cnn2)
dropout1 = L.Dropout(0.2)(relu2)
batch_norm2 = L.BatchNormalization()(dropout1)
max_pool1 = L.MaxPool1D(8)(batch_norm2)
conv3 = L.Conv1D(128, (5))(max_pool1)
relu3 = L.ReLU()(conv3)
conv4 = L.Conv1D(128, (5))(relu3)
relu4 = L.ReLU()(conv4)
conv5 = L.Conv1D(128, (5))(relu4)
batch_norm4 = L.BatchNormalization()(conv5)
relu5 = L.ReLU()(batch_norm4)
dropout2 = L.Dropout(0.2)(relu5)
conv6 = L.Conv1D(128, (5))(dropout2)
flatten = L.Flatten()(conv6)
dropout3 = L.Dropout(0.2)(flatten)
output_logits = L.Dense(self.num_output_classes)(dropout3)
batch_norm5 = L.BatchNormalization()(output_logits)
softmax = L.Softmax()(batch_norm5)
model = Model(inputs=[input_layer], outputs=[softmax])
optimizer = tf.keras.optimizers.Adam(1e-5)
loss = tf.keras.losses.SparseCategoricalCrossentropy()
model.compile(optimizer=optimizer, loss=loss)
return model