-
Notifications
You must be signed in to change notification settings - Fork 1
/
hanoi.cpp
515 lines (410 loc) · 12.7 KB
/
hanoi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#include <iostream>
using namespace std;
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <string>
#include <bitset>
#include <cstdio>
#include <limits>
#include <vector>
#include <climits>
#include <cstring>
#include <cstdlib>
#include <fstream>
#include <numeric>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
// implement c++ big integer class using vector
// implement its +/-/*/% operations
/*
* @author panks
* Big Integer library in C++, single file implementation.
*/
#include <cmath>
#define MAX 10000 // for strings
using namespace std;
class BigInteger {
private:
string number;
bool sign;
public:
BigInteger(); // empty constructor initializes zero
BigInteger(string s); // "string" constructor
BigInteger(string s, bool sin); // "string" constructor
BigInteger(int n); // "int" constructor
void setNumber(string s);
const string& getNumber(); // retrieves the number
void setSign(bool s);
const bool& getSign();
BigInteger absolute(); // returns the absolute value
void operator = (BigInteger b);
bool operator == (BigInteger b);
bool operator != (BigInteger b);
bool operator > (BigInteger b);
bool operator < (BigInteger b);
bool operator >= (BigInteger b);
bool operator <= (BigInteger b);
BigInteger& operator ++(); // prefix
BigInteger operator ++(int); // postfix
BigInteger& operator --(); // prefix
BigInteger operator --(int); // postfix
BigInteger operator + (BigInteger b);
BigInteger operator - (BigInteger b);
BigInteger operator * (BigInteger b);
BigInteger operator / (BigInteger b);
BigInteger operator % (BigInteger b);
BigInteger& operator += (BigInteger b);
BigInteger& operator -= (BigInteger b);
BigInteger& operator *= (BigInteger b);
BigInteger& operator /= (BigInteger b);
BigInteger& operator %= (BigInteger b);
BigInteger& operator [] (int n);
BigInteger operator -(); // unary minus sign
operator string(); // for conversion from BigInteger to string
private:
bool equals(BigInteger n1, BigInteger n2);
bool less(BigInteger n1, BigInteger n2);
bool greater(BigInteger n1, BigInteger n2);
string add(string number1, string number2);
string subtract(string number1, string number2);
string multiply(string n1, string n2);
pair<string, long long> divide(string n, long long den);
string toString(long long n);
long long toInt(string s);
};
//------------------------------------------------------------------------------
BigInteger::BigInteger() { // empty constructor initializes zero
number = "0";
sign = false;
}
BigInteger::BigInteger(string s) { // "string" constructor
if( isdigit(s[0]) ) { // if not signed
setNumber(s);
sign = false; // +ve
} else {
setNumber( s.substr(1) );
sign = (s[0] == '-');
}
}
BigInteger::BigInteger(string s, bool sin) { // "string" constructor
setNumber( s );
setSign( sin );
}
BigInteger::BigInteger(int n) { // "int" constructor
stringstream ss;
string s;
ss << n;
ss >> s;
if( isdigit(s[0]) ) { // if not signed
setNumber( s );
setSign( false ); // +ve
} else {
setNumber( s.substr(1) );
setSign( s[0] == '-' );
}
}
void BigInteger::setNumber(string s) {
number = s;
}
const string& BigInteger::getNumber() { // retrieves the number
return number;
}
void BigInteger::setSign(bool s) {
sign = s;
}
const bool& BigInteger::getSign() {
return sign;
}
BigInteger BigInteger::absolute() {
return BigInteger( getNumber() ); // +ve by default
}
void BigInteger::operator = (BigInteger b) {
setNumber( b.getNumber() );
setSign( b.getSign() );
}
bool BigInteger::operator == (BigInteger b) {
return equals((*this) , b);
}
bool BigInteger::operator != (BigInteger b) {
return ! equals((*this) , b);
}
bool BigInteger::operator > (BigInteger b) {
return greater((*this) , b);
}
bool BigInteger::operator < (BigInteger b) {
return less((*this) , b);
}
bool BigInteger::operator >= (BigInteger b) {
return equals((*this) , b)
|| greater((*this), b);
}
bool BigInteger::operator <= (BigInteger b) {
return equals((*this) , b)
|| less((*this) , b);
}
BigInteger& BigInteger::operator ++() { // prefix
(*this) = (*this) + 1;
return (*this);
}
BigInteger BigInteger::operator ++(int) { // postfix
BigInteger before = (*this);
(*this) = (*this) + 1;
return before;
}
BigInteger& BigInteger::operator --() { // prefix
(*this) = (*this) - 1;
return (*this);
}
BigInteger BigInteger::operator --(int) { // postfix
BigInteger before = (*this);
(*this) = (*this) - 1;
return before;
}
BigInteger BigInteger::operator + (BigInteger b) {
BigInteger addition;
if( getSign() == b.getSign() ) { // both +ve or -ve
addition.setNumber( add(getNumber(), b.getNumber() ) );
addition.setSign( getSign() );
} else { // sign different
if( absolute() > b.absolute() ) {
addition.setNumber( subtract(getNumber(), b.getNumber() ) );
addition.setSign( getSign() );
} else {
addition.setNumber( subtract(b.getNumber(), getNumber() ) );
addition.setSign( b.getSign() );
}
}
if(addition.getNumber() == "0") // avoid (-0) problem
addition.setSign(false);
return addition;
}
BigInteger BigInteger::operator - (BigInteger b) {
b.setSign( ! b.getSign() ); // x - y = x + (-y)
return (*this) + b;
}
BigInteger BigInteger::operator * (BigInteger b) {
BigInteger mul;
mul.setNumber( multiply(getNumber(), b.getNumber() ) );
mul.setSign( getSign() != b.getSign() );
if(mul.getNumber() == "0") // avoid (-0) problem
mul.setSign(false);
return mul;
}
// Warning: Denomerator must be within "long long" size not "BigInteger"
BigInteger BigInteger::operator / (BigInteger b) {
long long den = toInt( b.getNumber() );
BigInteger div;
div.setNumber( divide(getNumber(), den).first );
div.setSign( getSign() != b.getSign() );
if(div.getNumber() == "0") // avoid (-0) problem
div.setSign(false);
return div;
}
// Warning: Denomerator must be within "long long" size not "BigInteger"
BigInteger BigInteger::operator % (BigInteger b) {
long long den = toInt( b.getNumber() );
BigInteger rem;
long long rem_int = divide(number, den).second;
rem.setNumber( toString(rem_int) );
rem.setSign( getSign() != b.getSign() );
if(rem.getNumber() == "0") // avoid (-0) problem
rem.setSign(false);
return rem;
}
BigInteger& BigInteger::operator += (BigInteger b) {
(*this) = (*this) + b;
return (*this);
}
BigInteger& BigInteger::operator -= (BigInteger b) {
(*this) = (*this) - b;
return (*this);
}
BigInteger& BigInteger::operator *= (BigInteger b) {
(*this) = (*this) * b;
return (*this);
}
BigInteger& BigInteger::operator /= (BigInteger b) {
(*this) = (*this) / b;
return (*this);
}
BigInteger& BigInteger::operator %= (BigInteger b) {
(*this) = (*this) % b;
return (*this);
}
BigInteger& BigInteger::operator [] (int n) {
return *(this + (n*sizeof(BigInteger)));
}
BigInteger BigInteger::operator -() { // unary minus sign
return (*this) * -1;
}
BigInteger::operator string() { // for conversion from BigInteger to string
string signedString = ( getSign() ) ? "-" : ""; // if +ve, don't print + sign
signedString += number;
return signedString;
}
bool BigInteger::equals(BigInteger n1, BigInteger n2) {
return n1.getNumber() == n2.getNumber()
&& n1.getSign() == n2.getSign();
}
bool BigInteger::less(BigInteger n1, BigInteger n2) {
bool sign1 = n1.getSign();
bool sign2 = n2.getSign();
if(sign1 && ! sign2) // if n1 is -ve and n2 is +ve
return true;
else if(! sign1 && sign2)
return false;
else if(! sign1) { // both +ve
if(n1.getNumber().length() < n2.getNumber().length() )
return true;
if(n1.getNumber().length() > n2.getNumber().length() )
return false;
return n1.getNumber() < n2.getNumber();
} else { // both -ve
if(n1.getNumber().length() > n2.getNumber().length())
return true;
if(n1.getNumber().length() < n2.getNumber().length())
return false;
return n1.getNumber().compare( n2.getNumber() ) > 0; // greater with -ve sign is LESS
}
}
bool BigInteger::greater(BigInteger n1, BigInteger n2) {
return ! equals(n1, n2) && ! less(n1, n2);
}
string BigInteger::add(string number1, string number2) {
string add = (number1.length() > number2.length()) ? number1 : number2;
char carry = '0';
int differenceInLength = abs( (int) (number1.size() - number2.size()) );
if(number1.size() > number2.size())
number2.insert(0, differenceInLength, '0'); // put zeros from left
else// if(number1.size() < number2.size())
number1.insert(0, differenceInLength, '0');
for(int i=number1.size()-1; i>=0; --i) {
add[i] = ((carry-'0')+(number1[i]-'0')+(number2[i]-'0')) + '0';
if(i != 0) {
if(add[i] > '9') {
add[i] -= 10;
carry = '1';
} else
carry = '0';
}
}
if(add[0] > '9') {
add[0]-= 10;
add.insert(0,1,'1');
}
return add;
}
string BigInteger::subtract(string number1, string number2) {
string sub = (number1.length()>number2.length())? number1 : number2;
int differenceInLength = abs( (int)(number1.size() - number2.size()) );
if(number1.size() > number2.size())
number2.insert(0, differenceInLength, '0');
else
number1.insert(0, differenceInLength, '0');
for(int i=number1.length()-1; i>=0; --i) {
if(number1[i] < number2[i]) {
number1[i] += 10;
number1[i-1]--;
}
sub[i] = ((number1[i]-'0')-(number2[i]-'0')) + '0';
}
while(sub[0]=='0' && sub.length()!=1) // erase leading zeros
sub.erase(0,1);
return sub;
}
string BigInteger::multiply(string n1, string n2) {
if(n1.length() > n2.length())
n1.swap(n2);
string res = "0";
for(int i=n1.length()-1; i>=0; --i) {
string temp = n2;
int currentDigit = n1[i]-'0';
int carry = 0;
for(int j=temp.length()-1; j>=0; --j) {
temp[j] = ((temp[j]-'0') * currentDigit) + carry;
if(temp[j] > 9) {
carry = (temp[j]/10);
temp[j] -= (carry*10);
} else
carry = 0;
temp[j] += '0'; // back to string mood
}
if(carry > 0)
temp.insert(0, 1, (carry+'0'));
temp.append((n1.length()-i-1), '0'); // as like mult by 10, 100, 1000, 10000 and so on
res = add(res, temp); // O(n)
}
while(res[0] == '0' && res.length()!=1) // erase leading zeros
res.erase(0,1);
return res;
}
pair<string, long long> BigInteger::divide(string n, long long den) {
long long rem = 0;
string result;
result.resize(MAX);
for(int indx=0, len = n.length(); indx<len; ++indx) {
rem = (rem * 10) + (n[indx] - '0');
result[indx] = rem / den + '0';
rem %= den;
}
result.resize( n.length() );
while( result[0] == '0' && result.length() != 1)
result.erase(0,1);
if(result.length() == 0)
result = "0";
return make_pair(result, rem);
}
string BigInteger::toString(long long n) {
stringstream ss;
string temp;
ss << n;
ss >> temp;
return temp;
}
long long BigInteger::toInt(string s) {
long long sum = 0;
for(int i=0; i<s.length(); i++)
sum = (sum*10) + (s[i] - '0');
return sum;
}
void move(char, char);
void hannoi(int n, char x, char y, char z) {
if ( n <= 1)
move(x,z);
else {
hannoi( n - 1, x , z, y);
move(x,z);
hannoi( n - 1, y, x, z);
}
}
void move(char x, char y) {
cout << "move from " << x << " to " << y << endl;
}
/*
As Hannoi has recursive relation
which f(n) = 2f(n-1) + 1 , f(1), which is f(n - 1 ) + 1 + f(n -1)
it takes,
1 , 3 , 7 , 15, 31 , 63 .....
by mathematical induction,
Assume that f(n) = 2^k - 1, so n = k + 1, it has the following expression,
f(k + 1) = 2*f(k) + 1 = 2 * ( 2* f(k-1) + 1) + 1 = 4 * 2f(k - 1) + 2 = 2(f(k-1) + 1) = 2^k^(k+1) - 1
*/
BigInteger fastHannoiSteps (int n) {
if (n == 0) return BigInteger(1);
return BigInteger(2)*fastHannoiSteps(--n);
}
int main() {
// our goal is to move all disks on pillar A to pillar C
hannoi(3, 'A', 'B', 'C');
cout << "\nHannoi takes " << (fastHannoiSteps(3) - BigInteger(1)).getNumber() << " steps\n";
return 0;
}