Skip to content

Latest commit

 

History

History
834 lines (577 loc) · 31.2 KB

README.md

File metadata and controls

834 lines (577 loc) · 31.2 KB

Torchserve on Elastic Kubernetes service (EKS)

Overview

This page demonstrates a Torchserve deployment in Kubernetes using Helm Charts. It uses the DockerHub Torchserve Image for the pods and a PersistentVolume for storing config / model files.

EKS Overview

In the following sections we would

  • Create a EKS Cluster for deploying Torchserve
  • Create a PersistentVolume backed by EFS to store models and config
  • Use Helm charts to deploy Torchserve

All these steps scripts are written for AWS EKS with Ubuntu 18.04 for deployment, but could be easily adopted for Kubernetes offering from other vendors.

Prerequisites

We would need the following tools to be installed to setup the K8S Torchserve cluster.

sudo apt-get update

# Install AWS CLI & Set Credentials
curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

# Verify your aws cli installation
aws --version

# Setup your AWS credentials / region
export AWS_ACCESS_KEY_ID=
export AWS_SECRET_ACCESS_KEY=
export AWS_DEFAULT_REGION=


# Install eksctl
curl --silent --location "https://github.com/weaveworks/eksctl/releases/latest/download/eksctl_$(uname -s)_amd64.tar.gz" | tar xz -C /tmp
sudo mv /tmp/eksctl /usr/local/bin

# Verify your eksctl installation
eksctl version

# Install kubectl
curl -LO "https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/linux/amd64/kubectl"
chmod +x ./kubectl
sudo mv ./kubectl /usr/local/bin/kubectl

# Verify your kubectl installation
kubectl version --client

# Install helm
curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
chmod 700 get_helm.sh
./get_helm.sh


# Install jq
sudo apt-get install jq

# Clone TS
git clone https://github.com/pytorch/serve/
cd kubernetes/EKS

EKS Cluster setup

In this section we decribe creating a EKS Kubernetes cluster with GPU nodes. If you have an existing EKS / Kubernetes cluster you may skip this section and skip ahead to PersistentVolume preparation.

Ensure you have your installed all required dependices & configured AWS CLI from the previous steps appropriate permissions. The following steps would,

  • Create a EKS cluster
  • Install all the required driver for NVIDIA GPU.

Creating a EKS cluster

EKS Optimized AMI Subscription

First subscribe to EKS-optimized AMI with GPU Support in the AWS Marketplace. Subscribe here. These hosts would be used for the EKS Node Group.

More details about these AMIs and configuring can be found here and here

Create a EKS Cluster

To create a cluster run the following command.

Update the templates/eks_cluster.yaml with needed changes like region, ami, instanceType in the yaml. Note: Make sure to set cluster name in overrideBootstrapCommand

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
  name: "TorchserveCluster"
  region: "us-west-2"

managedNodeGroups:
  - name: mg-1
    # EKS Optimized AMIs - https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
    ami: ami-048af94822f84c9c1
    instanceType: g4dn.xlarge
    minSize: 1
    desiredCapacity: 2
    maxSize: 3
    overrideBootstrapCommand: |
      #!/bin/bash
      /etc/eks/bootstrap.sh <cluster-name> --container-runtime containerd

cloudWatch:
  clusterLogging:
    enableTypes:
      ["audit", "authenticator", "api", "controllerManager", "scheduler"]

Then run the following command

eksctl create cluster -f templates/eks_cluster.yaml

Your output should look similar to

ubuntu@ip-172-31-50-36:~/serve/kubernetes$ eksctl create cluster -f templates/eks_cluster.yaml
[ℹ]  eksctl version 0.24.0
[ℹ]  using region us-west-2
[ℹ]  setting availability zones to [us-west-2c us-west-2b us-west-2a]
[ℹ]  subnets for us-west-2c - public:192.168.0.0/19 private:192.168.96.0/19
[ℹ]  subnets for us-west-2b - public:192.168.32.0/19 private:192.168.128.0/19
[ℹ]  subnets for us-west-2a - public:192.168.64.0/19 private:192.168.160.0/19
[ℹ]  nodegroup "mg-1" will use "ami-048af94822f84c9c1" [AmazonLinux2/1.16]
[ℹ]  using Kubernetes version 1.16
[ℹ]  creating EKS cluster "TorchserveCluster" in "us-west-2" region with un-managed nodes
[ℹ]  1 nodegroup (mg-1) was included (based on the include/exclude rules)
[ℹ]  will create a CloudFormation stack for cluster itself and 1 nodegroup stack(s)
[ℹ]  will create a CloudFormation stack for cluster itself and 0 managed nodegroup stack(s)
[ℹ]  if you encounter any issues, check CloudFormation console or try 'eksctl utils describe-stacks --region=us-west-2 --cluster=TorchserveCluster'
[ℹ]  Kubernetes API endpoint access will use default of {publicAccess=true, privateAccess=false} for cluster "TorchserveCluster" in "us-west-2"
[ℹ]  2 sequential tasks: { create cluster control plane "TorchserveCluster", 2 sequential sub-tasks: { update CloudWatch logging configuration, create nodegroup "mg-1" } }
[ℹ]  building cluster stack "eksctl-TorchserveCluster-cluster"
[ℹ]  deploying stack "eksctl-TorchserveCluster-cluster"
[✔]  configured CloudWatch logging for cluster "TorchserveCluster" in "us-west-2" (enabled types: api, audit, authenticator, controllerManager, scheduler & no types disabled)
[ℹ]  building nodegroup stack "eksctl-TorchserveCluster-nodegroup-mg-1"
[ℹ]  --nodes-min=1 was set automatically for nodegroup mg-1
[ℹ]  --nodes-max=1 was set automatically for nodegroup mg-1
[ℹ]  deploying stack "eksctl-TorchserveCluster-nodegroup-mg-1"
[ℹ]  waiting for the control plane availability...
[✔]  saved kubeconfig as "/home/ubuntu/.kube/config"
[ℹ]  no tasks
[✔]  all EKS cluster resources for "TorchserveCluster" have been created
[ℹ]  adding identity "arn:aws:iam::ACCOUNT_ID:role/eksctl-TorchserveCluster-nodegrou-NodeInstanceRole" to auth ConfigMap
[ℹ]  nodegroup "mg-1" has 0 node(s)
[ℹ]  waiting for at least 1 node(s) to become ready in "mg-1"
[ℹ]  nodegroup "mg-1" has 1 node(s)
[ℹ]  node "ip-instance_id.us-west-2.compute.internal" is ready
[ℹ]  as you are using a GPU optimized instance type you will need to install NVIDIA Kubernetes device plugin.
[ℹ]  	 see the following page for instructions: https://github.com/NVIDIA/k8s-device-plugin
[ℹ]  kubectl command should work with "/home/ubuntu/.kube/config", try 'kubectl get nodes'
[✔]  EKS cluster "TorchserveCluster" in "us-west-2" region is ready

This would create a EKS cluster named TorchserveCluster. This step would takes a considetable amount time to create EKS clusters. You would be able to track the progress in your cloudformation console. If you run in to any error inspect the events tab of the Cloud Formation UI.

EKS Overview

Verify that the cluster has been created with the following commands

eksctl get  clusters
kubectl get service,po,daemonset,pv,pvc --all-namespaces

Your output should look similar to,

ubuntu@ip-172-31-55-101:~/serve/kubernetes$ eksctl get  clusters
NAME			REGION
TorchserveCluster	us-west-2

ubuntu@ip-172-31-55-101:~/serve/kubernetes$ kubectl get service,po,daemonset,pv,pvc --all-namespaces
NAMESPACE     NAME                 TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)         AGE
default       service/kubernetes   ClusterIP   10.100.0.1    <none>        443/TCP         27m
kube-system   service/kube-dns     ClusterIP   10.100.0.10   <none>        53/UDP,53/TCP   27m

NAMESPACE     NAME                           READY   STATUS    RESTARTS   AGE
kube-system   pod/aws-node-2flf5             1/1     Running   0          19m
kube-system   pod/coredns-55c5fcd78f-2h7s4   1/1     Running   0          27m
kube-system   pod/coredns-55c5fcd78f-pm6n5   1/1     Running   0          27m
kube-system   pod/kube-proxy-pp8t2           1/1     Running   0          19m

NAMESPACE     NAME                        DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
kube-system   daemonset.apps/aws-node     1         1         1       1            1           <none>          27m
kube-system   daemonset.apps/kube-proxy   1         1         1       1            1           <none>          27m

NVIDIA Plugin

The NVIDIA device plugin for Kubernetes is a Daemonset that allows you to run GPU enabled containers. The instructions for installing the plugin can be found here

helm repo add nvdp https://nvidia.github.io/k8s-device-plugin
helm repo update
helm install \
    --generate-name \
    nvdp/nvidia-device-plugin

To verify that the plugin has been installed execute the following command

helm list

Your output should look similar to

NAME                           	NAMESPACE	REVISION	UPDATED                                	STATUS  	CHART                     	APP VERSION
nvidia-device-plugin-1607068152	default  	1       	2020-12-04 13:19:16.207166144 +0530 IST	deployed	nvidia-device-plugin-0.7.1	0.7.1      
kubectl get nodes "-o=custom-columns=NAME:.metadata.name,MEMORY:.status.allocatable.memory,CPU:.status.allocatable.cpu,GPU:.status.allocatable.nvidia\.com/gpu"

should show something similar to:

NAME                                          MEMORY       CPU     GPU
ip-192-168-43-94.us-west-2.compute.internal   57213900Ki   7910m   1

Setup PersistentVolume backed by EFS

Torchserve Helm Chart needs a PersistentVolume with a PVC label model-store-claim prepared with a specific folder structure shown below. This PersistentVolume contains the snapshot & model files which are shared between multiple pods of the torchserve deployment.

  model-server/
  ├── config
  │   └── config.properties
  └── model-store
      ├── mnist.mar
      └── squeezenet1_1.mar

Create EFS Volume for the EKS Cluster

This section describes steps to prepare a EFS backed PersistentVolume that would be used by the TS Helm Chart. To prepare a EFS volume as a shareifjccgiced model / config store we have to create a EFS file system, Security Group, Ingress rule, Mount Targets to enable EFS communicate across NAT of the EKS cluster.

The heavy lifting for these steps is performed by setup_efs.sh script. To run the script, Update the following variables in setup_efs.sh

CLUSTER_NAME=TorchserveCluster # EKS TS Cluser Name
MOUNT_TARGET_GROUP_NAME="eks-efs-group"

Then run source ./setup_efs.sh. This would also set all the env variables which might be used for deletion at a later time

The output of the script should look similar to,

Configuring TorchserveCluster
Obtaining VPC ID for TorchserveCluster
Obtained VPC ID - vpc-fff
Obtaining CIDR BLOCK for vpc-fff
Obtained CIDR BLOCK - 192.168.0.0/16
Creating Security Group
Created Security Group - sg-fff
Configuring Security Group Ingress
Creating EFS Fils System
Created EFS - fs-ff
{
    "FileSystems": [
        {
            "OwnerId": "XXXX",
            "CreationToken": "4ae307b6-62aa-44dd-909e-eebe0d0b19f3",
            "FileSystemId": "fs-88983c8d",
            "FileSystemArn": "arn:aws:elasticfilesystem:us-west-2:ff:file-system/fs-ff",
            "CreationTime": "2020-07-29T08:03:33+00:00",
            "LifeCycleState": "creating",
            "NumberOfMountTargets": 0,
            "SizeInBytes": {
                "Value": 0,
                "ValueInIA": 0,
                "ValueInStandard": 0
            },
            "PerformanceMode": "generalPurpose",
            "Encrypted": false,
            "ThroughputMode": "bursting",
            "Tags": []
        }
    ]
}
Waiting 30s for before procedding
Obtaining Subnets
Obtained Subnets - subnet-ff
Creating EFS Mount Target in subnet-ff
{
    "OwnerId": "XXXX",
    "MountTargetId": "fsmt-ff",
    "FileSystemId": "fs-ff",
    "SubnetId": "subnet-ff",
    "LifeCycleState": "creating",
    "IpAddress": "192.168.58.19",
    "NetworkInterfaceId": "eni-01ce1fd11df545226",
    "AvailabilityZoneId": "usw2-az1",
    "AvailabilityZoneName": "us-west-2b",
    "VpcId": "vpc-ff"
}
Creating EFS Mount Target in subnet-ff
{
    "OwnerId": "XXXX",
    "MountTargetId": "fsmt-ff",
    "FileSystemId": "fs-ff",
    "SubnetId": "subnet-ff",
    "LifeCycleState": "creating",
    "IpAddress": "192.168.5.7",
    "NetworkInterfaceId": "eni-03db930b204de6ab2",
    "AvailabilityZoneId": "usw2-az3",
    "AvailabilityZoneName": "us-west-2c",
    "VpcId": "vpc-ff"
}
Creating EFS Mount Target in subnet-ff
{
    "OwnerId": "XXXX",
    "MountTargetId": "fsmt-ff",
    "FileSystemId": "fs-ff",
    "SubnetId": "subnet-ff",
    "LifeCycleState": "creating",
    "IpAddress": "192.168.73.152",
    "NetworkInterfaceId": "eni-0a31830833bf6b030",
    "AvailabilityZoneId": "usw2-az2",
    "AvailabilityZoneName": "us-west-2a",
    "VpcId": "vpc-ff"
}
EFS File System ID - YOUR-EFS-ID
EFS File System DNS Name - YOUR-EFS-ID.efs..amazonaws.com
Succesfully created EFS & Mountpoints

Upon completion of the script it would emit a EFS volume DNS Name similar to fs-ab1cd.efs.us-west-2.amazonaws.com where fs-ab1cd is the EFS filesystem id.

You should be able to see a Security Group in your AWS Console with Inbound Rules to a NFS (Port 2049)

security_group

You should also find Mount Points in your EFS console for every region where there is a Node in the Node Group.

Prepare PersistentVolume for Deployment

We use the ELF Provisioner Helm Chart to create a PersistentVolume backed by EFS. Run the following command to set this up.

helm repo add stable https://charts.helm.sh/stable
helm repo update
helm install stable/efs-provisioner --set efsProvisioner.efsFileSystemId=YOUR-EFS-FS-ID --set efsProvisioner.awsRegion=us-west-2 --set efsProvisioner.reclaimPolicy=Retain --generate-name

you should get an output similar to

NAME: efs-provisioner-1596010253
LAST DEPLOYED: Wed Jul 29 08:10:56 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
You can provision an EFS-backed persistent volume with a persistent volume claim like below:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: my-efs-vol-1
  annotations:
    volume.beta.kubernetes.io/storage-class: aws-efs
spec:
  storageClassName: aws-efs
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 1Mi

Verify that your EFS Provisioner installation is succesfull by invoking kubectl get pods. Your output should look similar to,

ubuntu@ip-172-31-50-36:~/serve/kubernetes$ kubectl get pods
NAME                                          READY   STATUS    RESTARTS   AGE
efs-provisioner-1596010253-6c459f95bb-v68bm   1/1     Running   0          109s

Update templates/efs_pv_claim.yaml - resources.request.storage with the size of your PVC claim based on the size of the models you plan to use. Now run, kubectl apply -f templates/efs_pv_claim.yaml. This would also create a pod named pod/model-store-pod with PersistentVolume mounted so that we can copy the MAR / config files in the same folder structure described above.

Your output should look similar to,

ubuntu@ip-172-31-50-36:~/serve/kubernetes$ kubectl apply -f templates/efs_pv_claim.yaml
persistentvolumeclaim/model-store-claim created
pod/model-store-pod created

Verify that the PVC / Pod is created by excuting. kubectl get service,po,daemonset,pv,pvc --all-namespaces

You should see

  • Running status for pod/model-store-pod
  • Bound status for default/model-store-claim and persistentvolumeclaim/model-store-claim
ubuntu@ip-172-31-50-36:~/serve/kubernetes$ kubectl get service,po,daemonset,pv,pvc --all-namespaces
NAMESPACE     NAME                 TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)         AGE
default       service/kubernetes   ClusterIP   10.100.0.1    <none>        443/TCP         107m
kube-system   service/kube-dns     ClusterIP   10.100.0.10   <none>        53/UDP,53/TCP   107m

NAMESPACE     NAME                                              READY   STATUS    RESTARTS   AGE
default       pod/efs-provisioner-1596010253-6c459f95bb-v68bm   1/1     Running   0          4m49s
default       pod/model-store-pod                               1/1     Running   0          8s
kube-system   pod/aws-node-xx8kp                                1/1     Running   0          99m
kube-system   pod/coredns-5c97f79574-tchfg                      1/1     Running   0          107m
kube-system   pod/coredns-5c97f79574-thzqw                      1/1     Running   0          106m
kube-system   pod/kube-proxy-4l8mw                              1/1     Running   0          99m
kube-system   pod/nvidia-device-plugin-daemonset-dbhgq          1/1     Running   0          94m

NAMESPACE     NAME                                            DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
kube-system   daemonset.apps/aws-node                         1         1         1       1            1           <none>          107m
kube-system   daemonset.apps/kube-proxy                       1         1         1       1            1           <none>          107m
kube-system   daemonset.apps/nvidia-device-plugin-daemonset   1         1         1       1            1           <none>          94m

NAMESPACE   NAME                                                        CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                       STORAGECLASS   REASON   AGE
            persistentvolume/pvc-baf0bd37-2084-4a08-8a3c-4f77843b4736   1Gi        RWX            Delete           Bound    default/model-store-claim   aws-efs                 8s

NAMESPACE   NAME                                      STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   AGE
default     persistentvolumeclaim/model-store-claim   Bound    pvc-baf0bd37-2084-4a08-8a3c-4f77843b4736   1Gi        RWX            aws-efs        8s

Now edit the TS config file config.properties that would be used for the deployment. Any changes to this config should also have corresponding changes in Torchserve Helm Chart that we install in the next section. This config would be used by every torchserve instance in worker pods.

The default config starts squeezenet1_1 and mnist from the model zoo with 3, 5 workers.

inference_address=http://0.0.0.0:8080
management_address=http://0.0.0.0:8081
NUM_WORKERS=1
number_of_gpu=1
number_of_netty_threads=32
job_queue_size=1000
model_store=/home/model-server/shared/model-store
model_snapshot={"name":"startup.cfg","modelCount":2,"models":{"squeezenet1_1":{"1.0":{"defaultVersion":true,"marName":"squeezenet1_1.mar","minWorkers":3,"maxWorkers":3,"batchSize":1,"maxBatchDelay":100,"responseTimeout":120}},"mnist":{"1.0":{"defaultVersion":true,"marName":"mnist.mar","minWorkers":5,"maxWorkers":5,"batchSize":1,"maxBatchDelay":200,"responseTimeout":60}}}}

Now copy the files over to PersistentVolume using the following commands.

wget https://torchserve.s3.amazonaws.com/mar_files/squeezenet1_1.mar
wget https://torchserve.s3.amazonaws.com/mar_files/mnist.mar

kubectl exec --tty pod/model-store-pod -- mkdir /pv/model-store/
kubectl cp squeezenet1_1.mar model-store-pod:/pv/model-store/squeezenet1_1.mar
kubectl cp mnist.mar model-store-pod:/pv/model-store/mnist.mar


kubectl exec --tty pod/model-store-pod -- mkdir /pv/config/
kubectl cp config.properties model-store-pod:/pv/config/config.properties

Verify that the files have been copied by executing kubectl exec --tty pod/model-store-pod -- find /pv/ . You should get an output similar to,

ubuntu@ip-172-31-50-36:~/serve/kubernetes$ kubectl exec --tty pod/model-store-pod -- find /pv/
/pv/
/pv/config
/pv/config/config.properties
/pv/model-store
/pv/model-store/squeezenet1_1.mar
/pv/model-store/mnist.mar

Finally terminate the pod - kubectl delete pod/model-store-pod.

Deploy TorchServe using Helm Charts

The following table describes all the parameters for the Helm Chart.

Parameter Description Default
image Torchserve Serving image pytorch/torchserve:latest-gpu
management-port TS Inference port 8080
inference-port TS Management port 8081
replicas K8S deployment replicas 1
model-store EFS mountpath /home/model-server/shared/
persistence.size Storage size to request 1Gi
n_gpu Number of GPU in a TS Pod 1
n_cpu Number of CPU in a TS Pod 1
memory_limit TS Pod memory limit 4Gi
memory_request TS Pod memory request 1Gi

Edit the values in values.yaml with the right parameters. Somethings to consider,

  • Set torchserve_image to the pytorch/torchserve:latest if your nodes are CPU.
  • Set persistence.size based on the size of your models.
  • The value of replicas should be less than number of Nodes in the Node group.
  • n_gpu would be exposed to TS container by docker. This should be set to number_of_gpu in config.properties above.
  • n_gpu & n_cpu values are used on a per pod level and not in the entire cluster level
# Default values for torchserve helm chart.

torchserve_image: pytorch/torchserve:latest-gpu

namespace: torchserve

torchserve:
  management_port: 8081
  inference_port: 8080
  pvd_mount: /home/model-server/shared/
  n_gpu: 1
  n_cpu: 1
  memory_limit: 4Gi
  memory_request: 1Gi

deployment:
  replicas: 1 # Changes this to number of node in Node Group

persitant_volume:
  size: 1Gi

To install Torchserve, move to the Helm folder cd ../Helm and run helm install ts .

ubuntu@ip-172-31-50-36:~/serve/kubernetes$ helm install ts .
NAME: ts
LAST DEPLOYED: Wed Jul 29 08:29:04 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

Verify that torchserve has succesfully started by executing kubectl exec pod/torchserve-fff -- cat logs/ts_log.log on your torchserve pod. You can get this id by lookingup kubectl get po --all-namespaces

Your output should should look similar to

ubuntu@ip-172-31-50-36:~/serve/kubernetes$ kubectl exec pod/torchserve-fff -- cat logs/ts_log.log
2020-07-29 08:29:08,295 [INFO ] main org.pytorch.serve.ModelServer -
Torchserve version: 0.1.1
TS Home: /home/venv/lib/python3.6/site-packages
Current directory: /home/model-server
......

Test Torchserve Installation

Fetch the Load Balancer Extenal IP by executing

kubectl get svc

You should see an entry similar to

ubuntu@ip-172-31-65-0:~/ts/rel/serve$ kubectl get svc
NAME         TYPE           CLUSTER-IP      EXTERNAL-IP                                                              PORT(S)                         AGE
torchserve   LoadBalancer   10.100.142.22   your_elb.us-west-2.elb.amazonaws.com   8080:31115/TCP,8081:31751/TCP   14m

Now execute the following commands to test Management / Prediction APIs

curl http://your_elb.us-west-2.elb.amazonaws.com:8081/models

# You should something similar to the following
{
  "models": [
    {
      "modelName": "mnist",
      "modelUrl": "mnist.mar"
    },
    {
      "modelName": "squeezenet1_1",
      "modelUrl": "squeezenet1_1.mar"
    }
  ]
}


curl http://your_elb.us-west-2.elb.amazonaws.com:8081/models/squeezenet1_1

# You should see something similar to the following
[
  {
    "modelName": "squeezenet1_1",
    "modelVersion": "1.0",
    "modelUrl": "squeezenet1_1.mar",
    "runtime": "python",
    "minWorkers": 3,
    "maxWorkers": 3,
    "batchSize": 1,
    "maxBatchDelay": 100,
    "loadedAtStartup": false,
    "workers": [
      {
        "id": "9000",
        "startTime": "2020-07-23T18:34:33.201Z",
        "status": "READY",
        "gpu": true,
        "memoryUsage": 177491968
      },
      {
        "id": "9001",
        "startTime": "2020-07-23T18:34:33.204Z",
        "status": "READY",
        "gpu": true,
        "memoryUsage": 177569792
      },
      {
        "id": "9002",
        "startTime": "2020-07-23T18:34:33.204Z",
        "status": "READY",
        "gpu": true,
        "memoryUsage": 177872896
      }
    ]
  }
]


wget https://raw.githubusercontent.com/pytorch/serve/master/docs/images/kitten_small.jpg
curl -X POST  http://your_elb.us-west-2.elb.amazonaws.com:8080/predictions/squeezenet1_1 -T kitten_small.jpg

# You should something similar to the following
[
  {
    "lynx": 0.5370921492576599
  },
  {
    "tabby": 0.28355881571769714
  },
  {
    "Egyptian_cat": 0.10669822245836258
  },
  {
    "tiger_cat": 0.06301568448543549
  },
  {
    "leopard": 0.006023923866450787
  }
]

Troubleshooting

Troubleshooting EKCTL Cluster Creation

Possible errors in this step may be a result of

  • AWS Account limits.
  • IAM Policy of the role used during cluster creation - Minimum IAM Policy

Inspect your Cloudformation console' events tab, to diagonize any possible issues. You should able be able to find the following resources at the end of this step in the respective AWS consoles

  • EKS Cluser in the EKS UI
  • AutoScaling Group of the Node Groups
  • EC2 Node correponding to the node groups.

Also, take a look at eksctl website / github repo for any issues.

Troubleshooting EFS Persitant Volume Creation

Possible error in this step may be a result of one of the following. Your pod my be struck in Init / Creating forever / persitant volume claim may be in Pending forever.

  • Incorrect CLUSTER_NAME or Duplicate MOUNT_TARGET_GROUP_NAME in setup_efs.sh

    • Rerun the script with a different MOUNT_TARGET_GROUP_NAME to avoid conflict with a previous run
  • Faulty execution of setup_efs.sh

    • Look up the screenshots above for the expected AWS Console UI for Security group & EFS. If you dont see the Ingress permissions / Mount points created, Execute steps from setup_efs.sh to make sure that they complete as expected. We need 1 Mount point for every region where Nodes would be deployed. This step is very critical to the setup . If you run to any errors the aws-efs-csi driver might throw errors which might be hard to diagonize.
  • EFS CSI Driver installation

    • Ensure that --set efsProvisioner.efsFileSystemId=YOUR-EFS-FS-ID --set efsProvisioner.awsRegion=us-west-2 --set efsProvisioner.reclaimPolicy=Retain --generate-name is set correctly

    • You may inspect the values by running helm list and helm get all YOUR_RELEASE_ID to verify if the values used for the installation

    • You can execute the following commands to inspect the pods / events to debug EFS / CSI Issues

      kubectl get events --sort-by='.metadata.creationTimestamp'
      
      kubectl get pod --all-namespaces # Get the Pod ID
      
      kubectl logs pod/efs-provisioner-YOUR_POD
      kubectl logs pod/efs-provisioner-YOUR_POD
      kubectl describe pod/efs-provisioner-YOUR_POD
    • A more involved debugging step would involve installing a simple example app to verify EFS / EKS setup as described here (Section : To deploy a sample application and verify that the CSI driver is working)

    • More info about the driver can be found at

Troubleshooting Torchserve Helm Chart

Possible errors in this step may be a result of

  • Incorrect values in values.yaml

    • Changing values in torchserve.pvd_mount would need corresponding change in config.properties
  • Invalid config.properties

    • You can verify these values by running this for local TS installation
  • TS Pods in Pending state

    • Ensure you have available Nodes in Node Group
  • Helm Installation

    • You may inspect the values by running helm list and helm get all ts to verify if the values used for the installation
    • You can uninstall / reinstall the helm chart by executing helm uninstall ts and helm install ts .
    • If you get an error invalid: data: Too long: must have at most 1048576 characters, ensure that you dont have any stale files in your kubernetes dir. Else add them to .helmignore file.

Deleting Resources

  • Delete EFS aws efs delete-file-system --file-system-id $FILE_SYSTEM_ID
  • Delete Security Groups ``aws ec2 delete-security-group --group-id $MOUNT_TARGET_GROUP_ID`
  • Delete EKS cluster eksctl delete cluster --name $CLUSTER_NAME

If you run to any issue. Delete these manually from the UI. Note that, EKS cluster & node are deployed as CFN templates.

Roadmap

  • [] Autoscaling
  • [] Log / Metrics Aggregation using AWS Container Insights
  • [] EFK Stack Integration
  • [] Readiness / Liveness Probes
  • [] Canary
  • [] Cloud agnostic Distributed Storage example