forked from lukfor/pipeline-umi-amplicon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Snakefile
executable file
·276 lines (238 loc) · 10.6 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
container: "pipeline-umi-amplicon.sif"
def read_bed_names(filename):
names = []
with open(filename) as fh:
for line in fh:
line = line.strip()
if not line:
continue
cols = line.split("\t")
if len(cols) < 4:
print("Warning: ignoring {}. No name found".format(line))
continue
names.append(cols[3])
return names
########################
### FIXED PARAMETERS ###
########################
reference_fasta = config.get("reference_fasta")
if not reference_fasta:
raise RuntimeError("No reference FASTA found. Please specify 'reference_fasta' in config file")
input_folder = config.get('input_fastq')
if not input_folder:
raise RuntimeError("No input FASTQ files found. Please specify 'input_fastq' in config file")
target_bed = config.get('targets_bed')
if not target_bed:
raise RuntimeError("No target BED file found. Please spcify 'targets_bed' in config file")
sample_name = config.get("sample_name", "umi_sample")
#########################
## Optional parameters ##
#########################
allowed_umi_errors = config.get("umi_errors", 3)
subset_reads = config.get("downsample_to", 0)
min_reads_per_cluster = config.get("min_reads_per_cluster", 20)
max_reads_per_cluster = config.get("max_reads_per_cluster", 60)
min_overlap = config.get("min_overlap", 0.9)
balance_strands = config.get("balance_strands", True)
mm = config.get("medaka_model", "r941_min_high_g360")
fwd_context = config.get("fwd_context", "GTATCGTGTAGAGACTGCGTAGG")
rev_context = config.get("rev_context", "AGTGATCGAGTCAGTGCGAGTG")
fwd_umi = config.get("fwd_umi", "TTTVVVVTTVVVVTTVVVVTTVVVVTTT")
rev_umi = config.get("rev_umi", "AAABBBBAABBBBAABBBBAABBBBAAA")
min_length = config.get("min_length", 40)
max_length = config.get("max_length", 60)
########################
########################
########################
target = read_bed_names(target_bed)
balance_strands_param = "--balance_strands"
if not balance_strands:
balance_strands_param = ""
minimap2_param = "-ax map-ont -k 13"
print("Targets: {}".format(" ".join(target)), file=sys.stderr)
########################
######### RULES ########
########################
rule reads:
input:
expand("{name}/targets.bed", name=sample_name),
expand("{name}/align/{target}_final.bam.bai", name=sample_name, target=target),
expand("{name}/stats/{target}_vsearch_cluster_stats.tsv", name=sample_name, target=target),
expand("{name}/stats/{target}_consensus_size_vs_acc.tsv", name=sample_name, target=target)
rule varaints:
input:
expand("{name}/variants/{target}_final.vcf.gz", name=sample_name, target=target)
rule all:
input:
expand("{name}/targets.bed", name=sample_name),
expand("{name}/align/{target}_final.bam.bai", name=sample_name, target=target),
expand("{name}/stats/{target}_vsearch_cluster_stats.tsv", name=sample_name, target=target),
expand("{name}/variants/{target}_final.vcf.gz", name=sample_name, target=target),
expand("{name}/stats/{target}_consensus_size_vs_acc.tsv", name=sample_name, target=target),
rule copy_bed:
input:
target_bed
output:
"{name}/targets.bed"
shell:
"cp {input} {output}"
rule map_1d:
input:
FQ = input_folder,
REF = reference_fasta
params:
read_number = subset_reads,
minimap2_param = minimap2_param
output:
BAM = "{name}/align/1d.bam",
BAI = "{name}/align/1d.bam.bai"
threads: 30
shell:
"catfishq --max_n {params.read_number} {input.FQ} | minimap2 {params.minimap2_param} -t {threads} {input.REF} - | samtools sort -@ 5 -o {output.BAM} - && samtools index -@ {threads} {output.BAM}"
# Split reads by amplicons
rule split_reads:
input:
"{name}/align/1d.bam"
output:
DIR = directory("{name}/fasta_filtered/"),
STATS = "{name}/stats/umi_filter_reads_stats.txt"
params:
bed = target_bed,
min_overlap = min_overlap
shell:
"""
mkdir -p {output.DIR}
umi_filter_reads --min_overlap {params.min_overlap} -o {output.DIR} {params.bed} {input} 2>&1 | tee {output.STATS}
"""
# Map consensus reads after polishing
rule map_consensus:
input:
FA = "{name}/fasta/{target}_{type}.fasta",
REF = reference_fasta
params:
minimap2_param = minimap2_param
output:
BAM = "{name}/align/{target}_{type}.bam",
BAI = "{name}/align/{target}_{type}.bam.bai"
threads: 3
shell:
"minimap2 {params.minimap2_param} -t {threads} {input.REF} {input.FA} | samtools sort -@ 5 -o {output.BAM} - && samtools index -@ {threads} {output.BAM}"
rule detect_umi_fasta:
input:
"{name}/fasta_filtered/"
output:
"{name}/fasta_umi/{target}_detected_umis.fasta"
params:
errors = allowed_umi_errors,
fwd_context = fwd_context,
rev_context = rev_context,
fwd_umi = fwd_umi,
rev_umi = rev_umi,
shell:
"""
umi_extract --fwd-context {params.fwd_context} --rev-context {params.rev_context} --fwd-umi {params.fwd_umi} --rev-umi {params.rev_umi} --max-error {params.errors} {input}/{wildcards.target}.fastq -o {output} --tsv {output}.tsv
"""
rule detect_umi_consensus_fasta:
input:
"{name}/fasta/{target}_consensus.fasta"
output:
"{name}/fasta_umi/{target}_detected_umis_final.fasta"
params:
errors = allowed_umi_errors,
fwd_context = fwd_context,
rev_context = rev_context,
fwd_umi = fwd_umi,
rev_umi = rev_umi,
shell:
"""
umi_extract --fwd-context {params.fwd_context} --rev-context {params.rev_context} --fwd-umi {params.fwd_umi} --rev-umi {params.rev_umi} --max-error {params.errors} {input} -o {output} --tsv {output}.tsv
"""
rule cluster:
input: "{name}/fasta_umi/{target}_detected_umis.fasta"
output:
CENT = "{name}/clustering/{target}/clusters_centroid.fasta",
CONS = "{name}/clustering/{target}/clusters_consensus.fasta",
DIR = directory("{name}/clustering/{target}/vsearch_clusters")
params:
min_length = min_length,
max_length = max_length
threads: 10
shell:
"mkdir -p {wildcards.name}/clustering/{wildcards.target}/vsearch_clusters && vsearch --clusterout_id --clusters {wildcards.name}/clustering/{wildcards.target}/vsearch_clusters/test --centroids {output.CENT} --consout {output.CONS} --minseqlength {params.min_length} --maxseqlength {params.max_length} --qmask none --threads {threads} --cluster_fast {input} --clusterout_sort --gapopen 0E/5I --gapext 0E/2I --mismatch -8 --match 6 --iddef 0 --minwordmatches 0 --qmask none -id 0.85"
rule cluster_consensus:
input: "{name}/fasta_umi/{target}_detected_umis_final.fasta"
output:
CENT = "{name}/clustering_consensus/{target}/clusters_centroid.fasta",
CONS = "{name}/clustering_consensus/{target}/clusters_consensus.fasta",
DIR = directory("{name}/clustering_consensus/{target}/vsearch_clusters")
params:
min_length = min_length,
max_length = max_length
threads: 10
shell:
" mkdir -p {wildcards.name}/clustering_consensus/{wildcards.target}/vsearch_clusters && vsearch --clusterout_id --clusters {wildcards.name}/clustering_consensus/{wildcards.target}/vsearch_clusters/test --centroids {output.CENT} --consout {output.CONS} --minseqlength {params.min_length} --maxseqlength {params.max_length} --qmask none --threads {threads} --cluster_fast {input} --clusterout_sort --gapopen 0E/5I --gapext 0E/2I --mismatch -8 --match 6 --iddef 0 --minwordmatches 0 --qmask none -id 0.85"
rule reformat_consensus_clusters:
input:
"{name}/clustering_consensus/{target}/clusters_consensus.fasta"
output:
"{name}/fasta/{target}_final.fasta"
shell:
"cat {input} | umi_reformat_consensus > {output}"
rule reformat_filter_clusters:
input:
"{name}/clustering/{target}/clusters_consensus.fasta",
"{name}/clustering/{target}/vsearch_clusters"
params:
min_reads_per_cluster = min_reads_per_cluster,
max_reads_per_cluster = max_reads_per_cluster,
balance_strands_param = balance_strands_param
output:
out_dir = directory("{name}/clustering/{target}/clusters_fa/"),
stats = "{name}/stats/{target}_vsearch_cluster_stats.tsv",
out_file = "{name}/clustering/{target}/smolecule_clusters.fa"
shell:
"umi_parse_clusters --smolecule_out {output.out_file} {params.balance_strands_param} --min_reads_per_clusters {params.min_reads_per_cluster} --max_reads_per_clusters {params.max_reads_per_cluster} --stats_out {output.stats} -o {output.out_dir} {input}"
rule polish_clusters:
input:
I1 = "{name}/clustering/{target}/clusters_fa/",
I2 = "{name}/clustering/{target}/smolecule_clusters.fa"
output:
FOLDER = directory("{name}/fasta/{target}_consensus_tmp"),
BAM = "{name}/fasta/{target}_consensus.bam",
F = "{name}/fasta/{target}_consensus.fasta"
params:
medaka_model = mm
threads: 30
shell:
"""
rm -rf {output.FOLDER}
medaka smolecule --threads {threads} --length 50 --depth 2 --model {params.medaka_model} --method spoa {input.I2} {output.FOLDER} 2> {output.BAM}_smolecule.log
cp {output.FOLDER}/consensus.fasta {output.F}
cp {output.FOLDER}/subreads_to_spoa.bam {output.BAM} && cp {output.FOLDER}/subreads_to_spoa.bam.bai {output.BAM}.bai
"""
rule call_variants:
input:
BAM = "{name}/align/{target}_{type}.bam",
REF = reference_fasta
output:
"{name}/variants/{target}_{type}.vcf"
params:
min_freq = 0.01
shell:
"samtools mpileup -q 0 -Q 0 -B -d 10000000 -A -f {input.REF} {input.BAM} | varscan mpileup2cns --variants 1 --output-vcf 1 --min-coverage 8 --min-avg-qual 0 --min-var-freq {params.min_freq} --strand-filter 0 --p-value 1 --min-reads2 2 > {output}"
rule index_variants:
input:
"{name}/variants/{target}_{type}.vcf"
output:
"{name}/variants/{target}_{type}.vcf.gz"
shell:
"bedtools sort -header -i {input} | bgzip > {output} && tabix {output}"
rule seqkit_bam_acc_tsv:
input:
"{name}/align/{target}_{stage}.bam"
output:
"{name}/stats/{target}_{stage}_size_vs_acc.tsv"
shell:
"""
echo -e "Read\tCluster_size\tRef\tMapQual\tAcc\tReadLen\tRefLen\tRefAln\tRefCov\tReadAln\tReadCov\tStrand\tMeanQual\tLeftClip\tRightClip\tFlags\tIsSec\tIsSup" > {output} && seqkit bam {input} 2>&1 | sed 's/_/\t/' | tail -n +2 >> {output}
"""