forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare.py
455 lines (396 loc) · 18.3 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
File: prepare.py
This is the prepare class for all relavent prepare file
support:
1. download and uncompress the file.
2. save the data as the above format.
3. read the preprocessed data into train.txt and val.txt
"""
import os
import os.path as osp
import sys
import nrrd
import time
import glob
import argparse
import zipfile
import collections
import numpy as np
import nibabel as nib
import SimpleITK as sitk
from tqdm import tqdm
import json
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), ".."))
from medicalseg.utils import get_image_list
from tools.preprocess_utils import uncompressor, global_var, add_qform_sform
class Prep:
def __init__(self,
dataset_root="data/TemDataSet",
raw_dataset_dir="TemDataSet_seg_raw/",
images_dir="train_imgs",
labels_dir="train_labels",
phase_dir="phase0",
urls=None,
valid_suffix=("nii.gz", "nii.gz"),
filter_key=(None, None),
uncompress_params={"format": "zip",
"num_files": 1},
images_dir_test=""):
"""
Create proprosessor for medical dataset.
Folder structure:
dataset_root
├── raw_dataset_dir
│ ├── image_dir
│ ├── labels_dir
│ ├── images_dir_test
├── phase_dir
│ ├── images
│ ├── labels
│ ├── train_list.txt
│ └── val_list.txt
├── archive_1.zip
├── archive_2.zip
└── ... archives ...
Args:
urls (dict): Urls to download dataset archive. Key will be used as archive name.
valid_suffix(tuple): Only files with the assigned suffix will be considered. The first is the suffix for image, and the other is for label.
filter_key(tuple): Only files containing the filter_key the will be considered.
"""
# combine all paths
self.dataset_root = dataset_root
self.phase_path = os.path.join(self.dataset_root, phase_dir)
self.raw_data_path = os.path.join(self.dataset_root, raw_dataset_dir)
self.dataset_json_path = os.path.join(
self.raw_data_path,
"dataset.json") # save the dataset.json to raw path
self.image_path = os.path.join(self.phase_path, "images")
self.label_path = os.path.join(self.phase_path, "labels")
os.makedirs(self.dataset_root, exist_ok=True)
os.makedirs(self.phase_path, exist_ok=True)
os.makedirs(self.image_path, exist_ok=True)
os.makedirs(self.label_path, exist_ok=True)
self.gpu_tag = "GPU" if global_var.get_value('USE_GPU') else "CPU"
self.urls = urls
if osp.exists(self.raw_data_path):
print(
f"raw_dataset_dir {self.raw_data_path} exists, skipping uncompress. To uncompress again, remove this directory"
)
else:
self.uncompress_file(
num_files=uncompress_params["num_files"],
form=uncompress_params["format"])
self.image_files_test = None
if len(images_dir_test
) != 0: # test image filter is the same as training image
self.image_files_test = get_image_list(
os.path.join(self.raw_data_path, images_dir_test),
valid_suffix[0], filter_key[0])
self.image_files_test.sort()
self.image_path_test = os.path.join(self.phase_path, 'images_test')
os.makedirs(self.image_path_test, exist_ok=True)
# Load the needed file with filter
if isinstance(images_dir, tuple):
self.image_files = []
self.label_files = []
for i in range(len(images_dir)):
self.image_files += get_image_list(
os.path.join(self.raw_data_path, images_dir[i]),
valid_suffix[0], filter_key[0])
self.label_files += get_image_list(
os.path.join(self.raw_data_path, labels_dir[i]),
valid_suffix[1], filter_key[1])
else:
self.image_files = get_image_list(
os.path.join(self.raw_data_path, images_dir), valid_suffix[0],
filter_key[0])
self.label_files = get_image_list(
os.path.join(self.raw_data_path, labels_dir), valid_suffix[1],
filter_key[1])
self.image_files.sort()
self.label_files.sort()
def uncompress_file(self, num_files, form):
uncompress_tool = uncompressor(
download_params=(self.urls, self.dataset_root, True))
"""unzip all the file in the root directory"""
files = glob.glob(os.path.join(self.dataset_root, "*.{}".format(form)))
assert len(files) == num_files, "The file directory should include {} compressed files, but there is only {}".format(num_files, len(files))
for f in files:
extract_path = os.path.join(self.raw_data_path,
f.split("/")[-1].split('.')[0])
uncompress_tool._uncompress_file(
f, extract_path, delete_file=False, print_progress=True)
@staticmethod
def load_medical_data(f):
"""
load data of different format into numpy array, return data is in xyz
f: the complete path to the file that you want to load
"""
filename = osp.basename(f).lower()
images = []
# validate nii.gz on lung and mri with correct spacing_resample
if filename.endswith((".nii", ".nii.gz", ".dcm")):
if "radiopaedia" in filename or "corona" in filename:
f_nps = [nib.load(f).get_fdata(dtype=np.float32)]
else:
itkimage = sitk.ReadImage(f)
if itkimage.GetDimension() == 4:
slicer = sitk.ExtractImageFilter()
s = list(itkimage.GetSize())
s[-1] = 0
slicer.SetSize(s)
for slice_idx in range(itkimage.GetSize()[-1]):
slicer.SetIndex([0, 0, 0, slice_idx])
sitk_volume = slicer.Execute(itkimage)
images.append(sitk_volume)
else:
images = [itkimage]
images = [sitk.DICOMOrient(img, 'LPS') for img in images]
f_nps = [sitk.GetArrayFromImage(img) for img in images]
elif filename.endswith(
(".mha", ".mhd", "nrrd"
)): # validate mhd on lung and mri with correct spacing_resample
itkimage = sitk.DICOMOrient(sitk.ReadImage(f), 'LPS')
f_np = sitk.GetArrayFromImage(itkimage)
if f_np.ndim == 4:
f_nps = [f_np[:, :, :, idx] for idx in range(f_np.shape[3])]
else:
f_nps = [f_np]
f_nps = [np.transpose(f_np, [1, 2, 0]) for f_np in f_nps]
elif filename.endswith(".raw"):
raise RuntimeError(
f"Received {f}. Please only provide path to .mhd file, not to .raw file"
)
else:
raise NotImplementedError
return f_nps
def load_save(self):
"""
preprocess files, transfer to the correct type, and save it to the directory.
"""
print(
"Start convert images to numpy array using {}, please wait patiently"
.format(self.gpu_tag))
tic = time.time()
with open(self.dataset_json_path, 'r', encoding='utf-8') as f:
dataset_json_dict = json.load(f)
if self.image_files_test:
process_files = (self.image_files, self.label_files,
self.image_files_test)
process_tuple = ("images", "labels", "images_test")
save_tuple = (self.image_path, self.label_path,
self.image_path_test)
else:
process_files = (self.image_files, self.label_files)
process_tuple = ("images", "labels")
save_tuple = (self.image_path, self.label_path)
for i, files in enumerate(process_files):
pre = self.preprocess[process_tuple[i]]
savepath = save_tuple[i]
for f in tqdm(
files,
total=len(files),
desc="preprocessing the {}".format(
["images", "labels", "images_test"][i])):
# load data will transpose the image from "zyx" to "xyz"
spacing = dataset_json_dict["training"][
osp.basename(f).split(".")[0]]["spacing"] if i == 0 else None
f_nps = Prep.load_medical_data(f)
for volume_idx, f_np in enumerate(f_nps):
for op in pre:
if op.__name__ == "resample":
f_np, new_spacing = op(
f_np,
spacing=spacing) # (960, 15, 960) if transpose
else:
f_np = op(f_np)
f_np = f_np.astype("float32") if i == 0 else f_np.astype(
"int32")
volume_idx = "" if len(f_nps) == 1 else f"-{volume_idx}"
np.save(
os.path.join(
savepath,
osp.basename(f).split(".")[0] + volume_idx), f_np)
if i == 0:
dataset_json_dict["training"][osp.basename(f).split(".")[
0]]["spacing_resample"] = new_spacing
with open(self.dataset_json_path, 'w', encoding='utf-8') as f:
json.dump(dataset_json_dict, f, ensure_ascii=False, indent=4)
print("The preprocess time on {} is {}".format(self.gpu_tag,
time.time() - tic))
def convert_path(self):
"""convert nii.gz file to numpy array in the right directory"""
raise NotImplementedError
def generate_txt(self):
"""generate the train_list.txt and val_list.txt"""
raise NotImplementedError
# TODO add data visualize method, such that data can be checked every time after preprocess.
def visualize(self):
pass
# imga = Image.fromarray(np.int8(imga))
# #当要保存的图片为灰度图像时,灰度图像的 numpy 尺度是 [1, h, w]。需要将 [1, h, w] 改变为 [h, w]
# imgb = np.squeeze(imgb)
# # imgb = Image.fromarray(np.int8(imgb))
# plt.figure(figsize=(12, 6))
# plt.subplot(1,2,1),plt.xticks([]),plt.yticks([]),plt.imshow(imga)
# plt.subplot(1,2,2),plt.xticks([]),plt.yticks([]),plt.imshow(imgb)
# plt.show()
@staticmethod
def write_txt(txt, image_names, label_names=None):
"""
write the image_names and label_names on the txt file like this:
images/image_name labels/label_name
...
or this when label is None.
images/image_name
...
"""
with open(txt, 'w') as f:
for i in range(len(image_names)):
if label_names is not None:
string = "{} {}\n".format('images/' + image_names[i],
'labels/' + label_names[i])
else:
string = "{}\n".format('images/' + image_names[i])
f.write(string)
print("successfully write to {}".format(txt))
def split_files_txt(self, txt, image_files, label_files=None, split=None):
"""
Split filenames and write the image names and label names on train.txt, val.txt or test.txt.
Set the valset to 20% of images if all files need to be used in training.
Args:
txt(string): the path to the txt file, for example: "data/train.txt"
image_files(list|tuple): the list of image names.
label_files(list|tuple): the list of label names, order is corresponding with the image_files.
split(float|int): Percentage of the dataset used in training
"""
if split is None:
if label_files is None: # testset don't have
split = len(image_files)
else:
split = int(0.8 * len(image_files))
elif split <= 1:
split = int(split * len(image_files))
elif split > 1:
raise RuntimeError(
"Only have {} images but required {} images in trainset")
if "train" in txt:
image_names = image_files[:split]
label_names = label_files[:split]
elif "val" in txt:
# set the valset to 20% of images if all files need to be used in training
if split == len(image_files):
valsplit = int(0.8 * len(image_files))
image_names = image_files[valsplit:]
label_names = label_files[valsplit:]
else:
image_names = image_files[split:]
label_names = label_files[split:]
elif "test" in txt:
self.write_txt(txt, image_files[:split])
return
else:
raise NotImplementedError(
"The txt split except for train.txt, val.txt and test.txt is not implemented yet."
)
self.write_txt(txt, image_names, label_names)
@staticmethod
def set_image_infor(image_name, infor_dict):
try:
img_itk = sitk.ReadImage(image_name)
except:
add_qform_sform(image_name)
img_itk = sitk.ReadImage(image_name)
infor_dict["dim"] = img_itk.GetDimension()
img_npy = sitk.GetArrayFromImage(img_itk)
infor_dict["shape"] = [img_npy.shape, ]
infor_dict["minmax_vals"] = [str(img_npy.min()), str(img_npy.max())]
infor_dict["spacing"] = img_itk.GetSpacing()
infor_dict["origin"] = img_itk.GetOrigin()
infor_dict["direction"] = img_itk.GetDirection()
return infor_dict
def generate_dataset_json(self,
modalities,
labels,
dataset_name,
license_desc="hands off!",
dataset_description="",
dataset_reference="",
save_path=None):
"""
:param save_path: This needs to be the full path to the dataset.json you intend to write, default is the raw_data_path
:param images_dir: path to the images folder of that dataset
:param labels_dir: path to the label folder of that dataset
:param modalities: tuple of strings with modality names. must be in the same order as the images (first entry
corresponds to _0000.nii.gz, etc). Example: ('T1', 'T2', 'FLAIR').
:param labels: dict with int->str (key->value) mapping the label IDs to label names. Note that 0 is always
supposed to be background! Example: {0: 'background', 1: 'edema', 2: 'enhancing tumor'}
:param dataset_name: The name of the dataset. Can be anything you want
:param license_desc:
:param dataset_description:
:param dataset_reference: website of the dataset, if available
:return: saved dataset.json
"""
if save_path is not None:
self.dataset_json_path = os.path.join(
save_path, "dataset.json") # save the dataset.json to raw path
if osp.exists(self.dataset_json_path):
print(
f"Dataset json exists, skipping. Delete file {self.dataset_json_path} to regenerate."
)
return
if not self.dataset_json_path.endswith("dataset.json"):
print(
"WARNING: output file name is not dataset.json! This may be intentional or not. You decide. "
"Proceeding anyways...")
json_dict = {}
json_dict['name'] = dataset_name
json_dict['description'] = dataset_description
json_dict['reference'] = dataset_reference
json_dict['licence'] = license_desc
json_dict['modality'] = {
str(i): modalities[i]
for i in range(len(modalities))
}
json_dict['labels'] = {str(i): labels[i] for i in labels.keys()}
# set information of training and testing file
json_dict['training'] = {}
for i, image_name in enumerate(
tqdm(
self.image_files,
total=len(self.image_files),
desc="Load train file information into dataset.json")):
infor_dict = {
'image': image_name,
"label": self.label_files[i]
} # nii.gz filename
infor_dict = self.set_image_infor(image_name, infor_dict)
json_dict['training'][image_name.split("/")[-1].split(".")[
0]] = infor_dict
json_dict['test'] = {}
if self.image_files_test:
for i, image_name in enumerate(
tqdm(
self.image_files_test,
total=len(self.image_files_test),
desc="Load Test file information")):
infor_dict = {'image': image_name}
infor_dict = self.set_image_infor(image_name, infor_dict)
json_dict['test'][image_name.split("/")[-1].split(".")[
0]] = infor_dict
with open(self.dataset_json_path, 'w', encoding='utf-8') as f:
json.dump(json_dict, f, ensure_ascii=False, indent=4)
print("save dataset.json to {}".format(self.dataset_json_path))