forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NQueens.cs
106 lines (101 loc) · 3.1 KB
/
NQueens.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/*
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, print all distinct solutions to the n-queens puzzle.
Each solution contains distinct board configurations of the n-queens’ placement,
where the solutions are a permutation of [1,2,3..n] in increasing order,
here the number in the ith place denotes that the ith-column queen is placed in the row with that number.
For eg below figure represents a chessboard [3 1 4 2].
[0,0,Q,0]
[Q,0,0,0]
[0,0,0,Q]
[0,Q,0,0]
Input:
The first line of input contains an integer T denoting the no of test cases.
Then T test cases follow. Each test case contains an integer n denoting the size of the chessboard.
Output:
For each test case, output your solutions on one line where each solution is enclosed in square brackets
'[', ']' separated by a space . The solutions are permutations of {1, 2, 3 …, n} in increasing order where
the number in the ith place denotes the ith-column queen is placed in the row with that number,
if no solution exists print -1.
Constraints:
1<=T<=10
1<=n<=10
Example:
Input
2
1
4
Output:
[1 ]
[2 4 1 3 ] [3 1 4 2 ]
*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace GFG
{
class Program
{
static bool resultFound=false;
static void Main(String[] args)
{
int t = Int32.Parse(Console.ReadLine());
for(int i = 0; i < t; i++)
{
int n= Int32.Parse(Console.ReadLine());
int[,] board = new int[n,n];
Nqueen(board,0,n);
if (!resultFound) Console.Write(-1);
Console.WriteLine();
}
}
private static void Display(int[,] board, int n)
{
Console.Write("[");
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if (board[j, i] == 1)Console.Write(j + 1+" ");
}
}
Console.Write("]");
}
private static void Nqueen(int[,] board, int col, int n)
{
if (col >= n)
{
resultFound = true;
Display(board,n);
return;
}
for(int i = 0; i < n; i++)
{
if (IsSafe(board, i, col, n))
{
board[i, col] = 1;
Nqueen(board, col + 1, n);
board[i, col] = 0;
}
}
}
private static bool IsSafe(int[,] board, int row, int col, int n)
{
for(int i = 0; i < col; i++)
{
if (board[row, i] == 1) return false;
}
for(int i=row,j=col;i>=0 && j >=0; i--, j--)
{
if (board[i, j] == 1) return false;
}
for(int i=row,j=col;i<n && j >= 0; i++, j--)
{
if (board[i, j] == 1) return false;
}
return true;
}
}
}