diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 36dd5f6..7dcaed5 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-20T16:52:46","documenter_version":"1.2.1"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-20T16:55:35","documenter_version":"1.2.1"}} \ No newline at end of file diff --git a/dev/api/index.html b/dev/api/index.html index d7c07b5..601411b 100644 --- a/dev/api/index.html +++ b/dev/api/index.html @@ -1,11 +1,11 @@ -Library Reference · DE.jl

Library Reference

Catlab.WiringDiagrams.WiringDiagramAlgebras.oapplyMethod
function oapply(relation::RelationDiagram, podes::Vector{D}) where {D<:OpenSummationDecapode}

Compose a list of Decapodes as specified by the given relation diagram.

The Decapodes must be given in the same order as they were specified in the relation.

State variables (such as the (C,V) given in the head of the following @relation) do not affect the result of a composition.

Examples

julia> compose_diff_adv = @relation (C,V) begin
+Library Reference · DE.jl

Library Reference

Catlab.WiringDiagrams.WiringDiagramAlgebras.oapplyMethod
function oapply(relation::RelationDiagram, podes::Vector{D}) where {D<:OpenSummationDecapode}

Compose a list of Decapodes as specified by the given relation diagram.

The Decapodes must be given in the same order as they were specified in the relation.

State variables (such as the (C,V) given in the head of the following @relation) do not affect the result of a composition.

Examples

julia> compose_diff_adv = @relation (C,V) begin
   diffusion(C, ϕ₁)
   advection(C, ϕ₂, V)
   superposition(ϕ₁, ϕ₂, ϕ, C)
 end;
 
 julia> oapply(compose_diff_adv, [(Diffusion, [:C, :ϕ]),
-  (Advection, [:C, :ϕ, :V]), (Superposition, [:ϕ₁, :ϕ₂, :ϕ, :C])]);
source
DiagrammaticEquations.OpenMethod
Open(d::SummationDecapode{T,U,V}, names::AbstractVector{Symbol}) where {T,U,V}

creates an OpenSummationDecapode based on named variables rather than variable indices. See AlgebraicPetri.jl's Open for the analogous verion for LabelledReactionNetworks.

source
DiagrammaticEquations.average_rewriteMethod
function average_rewrite(deca_source::SummationDecapode)

Compute each quantitity in the given Decapode by the average of all computation paths leading to that node.

source
DiagrammaticEquations.collateMethod
function collate(equations, boundaries, uwd, symbols)

Create a collage of two Decapodes that simulates with boundary conditions. ```

source
DiagrammaticEquations.contract_operatorsMethod
function contract_operators(d::SummationDecapode)

Find chains of Op1s in the given Decapode, and replace them with a single Op1 with a vector of function names. After this process, all Vars that are not a part of any computation are removed.

source
DiagrammaticEquations.dot_rename!Method
dot_rename!(d::AbstractNamedDecapode)

Rename tangent variables by their depending variable appended with a dot. e.g. If D == ∂ₜ(C), then rename D to Ċ.

If a tangent variable updates multiple vars, choose one arbitrarily. e.g. If D == ∂ₜ(C) and D == ∂ₜ(B), then rename D to either Ċ or B ̇.

source
DiagrammaticEquations.find_dep_and_orderMethod
find_dep_and_order(d::AbstractNamedDecapode)

Find the order of each tangent variable in the Decapode, and the index of the variable that it is dependent on. Returns a tuple of (dep, order), both of which respecting the order in which incident(d, :∂ₜ, :op1) returns Vars.

source
DiagrammaticEquations.infer_types!Method
function infer_types!(d::SummationDecapode, op1_rules::Vector{NamedTuple{(:src_type, :tgt_type, :replacement_type, :op), NTuple{4, Symbol}}})

Infer types of Vars given rules wherein one type is known and the other not.

source
DiagrammaticEquations.resolve_overloads!Method
function resolve_overloads!(d::SummationDecapode, op1_rules::Vector{NamedTuple{(:src_type, :tgt_type, :resolved_name, :op), NTuple{4, Symbol}}})

Resolve function overloads based on types of src and tgt.

source
DiagrammaticEquations.type_check_Decapodes_compositionMethod
function type_check_Decapodes_composition(relation::RelationDiagram, decs::Vector{OpenSummationDecapode})

Check that the types of all Vars connected by the same junction match.

This function only throws an error on the first type mismatch found.

source
DiagrammaticEquations.unique_by!Method
function unique_by!(acset, column_names::Vector{Symbol})

Given column names from the same table, remove duplicate rows.

WARNING: This function does not check if other tables index into the one given. Removal of rows is performed with prejudice.

See also: unique_by.

Examples

julia> unique_by!(parallel_arrows(Graph, 123), :E, [:src,:tgt]) == parallel_arrows(Graph, 1)
-true
source
DiagrammaticEquations.unique_byMethod
function unique_by(acset, column_names::Vector{Symbol})

Given column names from the same table, return a copy of the acset with duplicate rows removed. Removal of rows is performed with prejudice.

WARNING: This function does not check if other tables index into the one given. Removal of rows is performed with prejudice.

See also: unique_by!.

Examples

julia> unique_by(parallel_arrows(Graph, 123), :E, [:src,:tgt]) == parallel_arrows(Graph, 1)
-true
source
Catlab.Graphics.GraphvizGraphs.to_graphvizMethod
Graphics.to_graphviz(F::AbstractDecapode; directed = true, kw...)

Visualize the given Decapode through Graphviz. Ensure that you have called using Catlab.Graphics before-hand, and have a way of visualizing SVG files in your current environment.

source
+ (Advection, [:C, :ϕ, :V]), (Superposition, [:ϕ₁, :ϕ₂, :ϕ, :C])]);
source
DiagrammaticEquations.OpenMethod
Open(d::SummationDecapode{T,U,V}, names::AbstractVector{Symbol}) where {T,U,V}

creates an OpenSummationDecapode based on named variables rather than variable indices. See AlgebraicPetri.jl's Open for the analogous verion for LabelledReactionNetworks.

source
DiagrammaticEquations.average_rewriteMethod
function average_rewrite(deca_source::SummationDecapode)

Compute each quantitity in the given Decapode by the average of all computation paths leading to that node.

source
DiagrammaticEquations.collateMethod
function collate(equations, boundaries, uwd, symbols)

Create a collage of two Decapodes that simulates with boundary conditions. ```

source
DiagrammaticEquations.contract_operatorsMethod
function contract_operators(d::SummationDecapode)

Find chains of Op1s in the given Decapode, and replace them with a single Op1 with a vector of function names. After this process, all Vars that are not a part of any computation are removed.

source
DiagrammaticEquations.dot_rename!Method
dot_rename!(d::AbstractNamedDecapode)

Rename tangent variables by their depending variable appended with a dot. e.g. If D == ∂ₜ(C), then rename D to Ċ.

If a tangent variable updates multiple vars, choose one arbitrarily. e.g. If D == ∂ₜ(C) and D == ∂ₜ(B), then rename D to either Ċ or B ̇.

source
DiagrammaticEquations.find_dep_and_orderMethod
find_dep_and_order(d::AbstractNamedDecapode)

Find the order of each tangent variable in the Decapode, and the index of the variable that it is dependent on. Returns a tuple of (dep, order), both of which respecting the order in which incident(d, :∂ₜ, :op1) returns Vars.

source
DiagrammaticEquations.infer_types!Method
function infer_types!(d::SummationDecapode, op1_rules::Vector{NamedTuple{(:src_type, :tgt_type, :replacement_type, :op), NTuple{4, Symbol}}})

Infer types of Vars given rules wherein one type is known and the other not.

source
DiagrammaticEquations.resolve_overloads!Method
function resolve_overloads!(d::SummationDecapode, op1_rules::Vector{NamedTuple{(:src_type, :tgt_type, :resolved_name, :op), NTuple{4, Symbol}}})

Resolve function overloads based on types of src and tgt.

source
DiagrammaticEquations.type_check_Decapodes_compositionMethod
function type_check_Decapodes_composition(relation::RelationDiagram, decs::Vector{OpenSummationDecapode})

Check that the types of all Vars connected by the same junction match.

This function only throws an error on the first type mismatch found.

source
DiagrammaticEquations.unique_by!Method
function unique_by!(acset, column_names::Vector{Symbol})

Given column names from the same table, remove duplicate rows.

WARNING: This function does not check if other tables index into the one given. Removal of rows is performed with prejudice.

See also: unique_by.

Examples

julia> unique_by!(parallel_arrows(Graph, 123), :E, [:src,:tgt]) == parallel_arrows(Graph, 1)
+true
source
DiagrammaticEquations.unique_byMethod
function unique_by(acset, column_names::Vector{Symbol})

Given column names from the same table, return a copy of the acset with duplicate rows removed. Removal of rows is performed with prejudice.

WARNING: This function does not check if other tables index into the one given. Removal of rows is performed with prejudice.

See also: unique_by!.

Examples

julia> unique_by(parallel_arrows(Graph, 123), :E, [:src,:tgt]) == parallel_arrows(Graph, 1)
+true
source
Catlab.Graphics.GraphvizGraphs.to_graphvizMethod
Graphics.to_graphviz(F::AbstractDecapode; directed = true, kw...)

Visualize the given Decapode through Graphviz. Ensure that you have called using Catlab.Graphics before-hand, and have a way of visualizing SVG files in your current environment.

source
diff --git a/dev/generated/literate_example/index.html b/dev/generated/literate_example/index.html index 8f9fa87..43763f5 100644 --- a/dev/generated/literate_example/index.html +++ b/dev/generated/literate_example/index.html @@ -1,2 +1,2 @@ -Code Example · DE.jl
+Code Example · DE.jl
diff --git a/dev/index.html b/dev/index.html index e70beea..62fd5de 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,2 @@ -DiagrammaticEquations.jl · DE.jl

DiagrammaticEquations.jl

DiagrammaticEquations.jl is a Julia library implementing category-theoretic formally reasoning about systems of algebraic and differential equations with diagrams.

+DiagrammaticEquations.jl · DE.jl

DiagrammaticEquations.jl

DiagrammaticEquations.jl is a Julia library implementing category-theoretic formally reasoning about systems of algebraic and differential equations with diagrams.