-
Notifications
You must be signed in to change notification settings - Fork 989
/
app_starting_code.py
81 lines (65 loc) · 3.37 KB
/
app_starting_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from datetime import datetime
from pathlib import Path
import pandas as pd
import plotly.express as px
from faicons import icon_svg
from shinywidgets import render_plotly
from state_choices import STATE_CHOICES
from shiny import reactive
from shiny.express import input, render, ui
# ---------------------------------------------------------------------
# Reading in Files
# ---------------------------------------------------------------------
new_listings_df = pd.read_csv(Path(__file__).parent / "Metro_new_listings_uc_sfrcondo_sm_month.csv")
median_listing_price_df = pd.read_csv(Path(__file__).parent / "Metro_mlp_uc_sfrcondo_sm_month.csv")
for_sale_inventory_df = pd.read_csv(Path(__file__).parent / "Metro_invt_fs_uc_sfrcondo_sm_month.csv")
# ---------------------------------------------------------------------
# Helper functions - converting to DateTime
# ---------------------------------------------------------------------
def string_to_date(date_str):
return datetime.strptime(date_str, "%Y-%m-%d").date()
def filter_by_date(df: pd.DataFrame, date_range: tuple):
rng = sorted(date_range)
dates = pd.to_datetime(df["Date"], format="%Y-%m-%d").dt.date
return df[(dates >= rng[0]) & (dates <= rng[1])]
# ---------------------------------------------------------------------
# Visualizations
# ---------------------------------------------------------------------
# Plotly visualization of Median Home Price Per State
def list_price_plot():
# Grouping by State Name and specifying the Date Columns
price_grouped = median_listing_price_df.groupby('StateName').mean(numeric_only=True)
date_columns = median_listing_price_df.columns[6:]
price_grouped_dates = price_grouped[date_columns].reset_index()
price_df_for_viz = price_grouped_dates.melt(id_vars=["StateName"], var_name="Date", value_name="Value")
# Creating Visualization using Ployly
fig = px.line(price_df_for_viz, x="Date", y="Value", color="StateName")
fig.update_xaxes(title_text="")
fig.update_yaxes(title_text="")
return fig
# Plotly visualization of Homes For Sale Per State
def for_sale_plot():
# Grouping by State Name and specifying the Date Columns
df2_grouped = for_sale_inventory_df.groupby('StateName').sum(numeric_only=True)
date_columns = for_sale_inventory_df.columns[6:]
df2_grouped_dates = df2_grouped[date_columns].reset_index()
df2_melted = df2_grouped_dates.melt(id_vars=["StateName"], var_name="Date", value_name="Value")
# Creating Visualization using Ployly
df = for_sale_filtered()
fig = px.line(df, x="Date", y="Value", color="StateName")
fig.update_xaxes(title_text="")
fig.update_yaxes(title_text="")
return fig
# Plotly visualization of Listings Per State
def listings_plot():
# Grouping by State Name and specifying the Date Columns
df3_grouped = new_listings_df.groupby('StateName').sum(numeric_only=True)
date_columns = new_listings_df.columns[6:]
df3_grouped_dates = df3_grouped[date_columns].reset_index()
df3_melted = df3_grouped_dates.melt(id_vars=["StateName"], var_name="Date", value_name="Value")
# Creating Visualization using Ployly
df = listings_filtered()
fig = px.line(df, x="Date", y="Value", color="StateName")
fig.update_xaxes(title_text="")
fig.update_yaxes(title_text="")
return fig