-
Notifications
You must be signed in to change notification settings - Fork 0
/
des.pl
319 lines (292 loc) · 10.2 KB
/
des.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#! /usr/bin/perl -l
# Code generator for exhaustive search of DES s-boxes
# Be aware: it creates files in current directory!
# TODO: Currently or/xor/and/not/andnot only.
# Copyright © 2012 Aleksey Cherepanov <[email protected]>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted.
my $number_of_gates = int shift @ARGV;
use strict;
use warnings;
# TODO: 32-bit platforms support.
my $vtype = 'unsigned long';
my $sizeofvtype = 8;
my (@vvars, @vars);
my $inputs = 6;
# DES s-boxes borrowed from DES_std.c of John the Ripper.
my @S = (
[
[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
[0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
[4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
[15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13]
], [
[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
[3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
[0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
[13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9]
], [
[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
[13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
[13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
[1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12]
], [
[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
[13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
[10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
[3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14]
], [
[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
[14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
[4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
[11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3]
], [
[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
[10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
[9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
[4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13]
], [
[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
[13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
[1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
[6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12]
], [
[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
[1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
[7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
[2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11]
]
);
sub bitslice {
# TODO: more than 64 bits in value.
# NOTE: vectors full of zero bits are dropped.
reverse grep { $_ } map {
my $t = 0;
my $bit = $_;
$t |= ($_[$_] & (1 << $bit) ? 1 : 0) << $_ for 0 .. $#_;
$t
} 0 .. 63;
}
# We pack all possible inputs and respective results into vectors and
# use them to check results of sequences of operations.
my @inputs = 0 .. 2 ** $inputs - 1;
my @bitsliced_inputs = bitslice @inputs;
sub shuffled {
my $value = shift;
my $r = 0;
$r |= (($value >> shift) & 1) << shift while @_;
$r
}
# my $t = (13 << 1) + 1;
# my ($a, $b) = (shuffled($t, 5, 1, 0, 0), shuffled($t, qw/4 3 3 2 2 1 1 0/));
# print "[$a][$b] $S[0][$a][$b]";
# die;
my @outputs = map {
my @sbox = @$_;
[map { $sbox[shuffled($_, 5, 1, 0, 0)][shuffled($_, qw/4 3 3 2 2 1 1 0/)] } @inputs];
} @S;
#print $$_[0] for @outputs; die;
# TODO: group outputs by s-boxes.
my @bitsliced_outputs = map { bitslice @$_ } @outputs;
#printf "%016x\n", $_ for @bitsliced_inputs, @bitsliced_outputs; die;
# Split 6x1 into 2 5x1 using "select bit" to merge halves back. Any
# bit could be dropped so.
# TODO: Currently we not reduce number of inputs. Reduction would
# improve speed.
my @t = @bitsliced_outputs;
for (0 .. $#bitsliced_inputs) {
my ($a, $b, $s);
$a = $bitsliced_inputs[$_];
$b = ~$a;
$s = 2 ** ($#bitsliced_inputs - $_);
# printf "%016x %016x %016x\n", $a, $b, $a >> $s;
die "unexpected input shift" unless $a >> $s == $b;
# We copy the first half into the second and alternatively the
# second half into the first.
for (@t) {
push @bitsliced_outputs, (($_ & $a) >> $s) | ($_ & $a);
push @bitsliced_outputs, (($_ & $b) << $s) | ($_ & $b);
}
}
# printf "%016x\n", $_ for @bitsliced_outputs; die;
my $i;
my $body = '';
sub c {
$body .= "$_[0]\n";
}
$i = 0;
for (@bitsliced_inputs) {
c "res[$i] = ${_}U;";
$i++;
}
# TODO: Use malloc to allow big look-up tables.
# It is faster without this look-up table. Hence it is commented out.
# Though when there are more gates it may (or may not) be possible to
# get performance improvement.
my $res_lookup_bits = 22;
my $res_lookup_size = 2 ** $res_lookup_bits;
my $res_lookup_mask = $res_lookup_size - 1;
my $res_lookup_enabled = 0;
my ($lc0, $rc0) = $res_lookup_enabled ? ("", "") : qw(/* */);
c <<EOT;
$lc0
for (i = 0; i < $inputs; i++) {
res_lookup[res[i] & $res_lookup_mask] = 1;
}
$rc0
EOT
# TODO: Hash table? Some tree? Ordered array for binary search?
# This is the other case of look-up table. It is read-only table and
# works faster than pure direct checks. Choice of 16 bits seems to be
# good for 32 outputs (of original 8 6x4 DES s-boxes). For bigger
# amount of outputs greater value are better.
my $output_lookup_bits = 20;
my $output_lookup_shift = 64 - $output_lookup_bits;
my $output_lookup_size = 2 ** $output_lookup_bits;
my $output_lookup_mask = $output_lookup_size - 1;
my %pairs;
my $pair_code = 0;
for (@bitsliced_outputs) {
my ($a, $b) = ($_ & $output_lookup_mask, $_ >> $output_lookup_shift);
if (!defined $pairs{$a}) {
# TODO: Maybe small speed up is possible with better code assignment.
# push @{$pairs{$a}}, int rand(255) + 1, $b;
push @{$pairs{$a}}, $pair_code++ % 255 + 1, $b;
} else {
push @{$pairs{$a}}, $b;
}
}
for my $a (keys %pairs) {
my $c = shift @{$pairs{$a}};
for my $b (@{$pairs{$a}}) {
c "output_lookup[$a] = output_lookup2[$b] = $c;";
}
}
# push @bitsliced_outputs, ~$bitsliced_inputs[0];
# warn sprintf "%016x\n", $bitsliced_outputs[$#bitsliced_outputs];
my @gate_numbers = 0 .. $number_of_gates - 1;
for (@gate_numbers) {
for my $v (split //, 'gabre') {
push @vars, "$v$_";
}
# TODO: Tweak order of this array. Reverse?
my $already_found = join ") || (", map { "res[$_] == res[$i]" } 0 .. $i - 1;
$already_found = "($already_found)";
my ($gs, $as, $bs, $once);
if ($_) {
my $p = $_ - 1;
# my $pi = $i - 1;
# my $ppi = $pi - 1;
$as = "a$p";
$gs = "a$_ == a$p ? g$p : 0";
$bs = "a$_ == a$p && g$_ == g$p ? b$p : 0";
$once = '';
} else {
$as = 0;
$gs = 0;
$bs = 0;
# TODO: count time.
$once = <<EOT;
top_tried++;
if (top_tried < piece || piece < 0)
continue;
if (top_tried > piece) {
printf("finished $number_of_gates %d: %lu %lu\\n", piece, tried, good);
fprintf(stderr, "finished $number_of_gates %d: %lu %lu\\n", piece, tried, good);
return 0;
}
EOT
}
# NOTE: andnot is asymmetric so we split it into left and right
# because our optimization cuts right part.
# TODO: Does 2 variations of andnot bring new duplicates?
# NOTE: We assume that we could not find more than 255 outputs
# with the same position in look-up table.
c <<EOT;
for (a$_ = $as; a$_ < $i; a$_++) {
for (g$_ = $gs; g$_ < 6; g$_++) {
for (b$_ = $bs, e$_ = g$_ == 0 ? 1 : a$_; b$_ < e$_; b$_++) {
$once
res[$i] = g$_ == 0 ? ~res[a$_]
: g$_ == 1 ? res[a$_] | res[b$_]
: g$_ == 2 ? res[a$_] & res[b$_]
: g$_ == 3 ? res[a$_] ^ res[b$_]
: g$_ == 4 ? res[a$_] & ~res[b$_]
: ~res[a$_] & res[b$_];
$lc0 r$_ = res[$i] & $res_lookup_mask; $rc0
if ($lc0 res_lookup[r$_] && $rc0 ($already_found))
continue;
$lc0 res_lookup[r$_]++; $rc0
tried++;
EOT
$i++;
}
# Get back to last gate.
$i--;
# c "if (/*output_lookup[res[$i] & $output_lookup_mask] &&*/ ((" . (join ") || (", map { "${_}U == res[$i]" } @bitsliced_outputs) . "))) {\n"
# . "good++;"
# # TODO: Is %lx portable?
# . "printf(\"%016lx " . "%d %d %d " x $number_of_gates . "\\n\", res[$i], "
# . (join ", ", map { "g$_, a$_, b$_" } @gate_numbers) . ");\n"
# . "}";
push @vars, qw/l1 l2/;
c "l1 = output_lookup[res[$i] & $output_lookup_mask];";
c "if (l1) {";
c " l2 = output_lookup2[res[$i] >> $output_lookup_shift];";
c " if (l2)";
# TODO: This check is slow. So our sophisticated init is not needed.
#c " if (l1 == l2)";
c " switch (res[$i]) {";
# TODO: There are duplicates. It's interesting.
my %h;
$h{$_} = 1 for @bitsliced_outputs;
for (sort keys %h) {
c "case ${_}U:";
}
c "good++;"
# TODO: Is %lx portable?
. "printf(\"%016lx " . "%d %d %d " x $number_of_gates . "\\n\", res[$i], "
. (join ", ", map { "g$_, a$_, b$_" } @gate_numbers) . ");\n";
c " }";
c "}";
for (reverse @gate_numbers) {
c <<EOT;
$lc0 res_lookup[r$_]--; $rc0
}
}
}
EOT
}
my $vvars = join ", ", @vvars;
my $vars = join ", ", @vars;
# NOTE: "tried" shows nodes (including roots of dropped branches).
print <<EOT;
#include <stdio.h>
#include <stdlib.h>
$lc0 static unsigned char res_lookup[$res_lookup_size] = { 0 }; $rc0
static char output_lookup[$output_lookup_size] = { 0 };
static char output_lookup2[$output_lookup_size] = { 0 };
int main(int argc, char *argv[])
{
$vtype res[$inputs + $number_of_gates];
/*$vtype $vvars;*/
int $vars;
unsigned long tried = 0, good = 0;
int top_tried = -1, piece = 0;
int i;
if (sizeof($vtype) != $sizeofvtype) {
fprintf(stderr, "$vtype is not 64-bit, abort\\n");
return 1;
}
if (argc != 2) {
fprintf(stderr, "need a number of work piece as argument\\n");
return 2;
}
piece = atoi(argv[1]);
$body
fprintf(stderr, "max top_tried reached: %d (nothing was done)\\n", top_tried);
return 3;
}
EOT
__END__