力扣二叉树大总结!
不知不觉二叉树已经和我们度过了三十三天,「代码随想录」里已经发了三十三篇二叉树的文章,详细讲解了30+二叉树经典题目,一直坚持下来的录友们一定会二叉树有深刻理解了。
在每一道二叉树的题目中,我都使用了递归三部曲来分析题目,相信大家以后看到二叉树,看到递归,都会想:返回值、参数是什么?终止条件是什么?单层逻辑是什么?
而且几乎每一道题目我都给出对应的迭代法,可以用来进一步提高自己。
下面Carl把分析过的题目分门别类,可以帮助新录友循序渐进学习二叉树,也方便老录友面试前快速复习,看到一个标题,就回想一下对应的解题思路,这样很快就可以系统性的复习一遍二叉树了。
公众号的发文顺序,就是循序渐进的,所以如下分类基本就是按照文章发文顺序来的,我再做一个系统性的分类。
- 关于二叉树,你该了解这些!:二叉树的种类、存储方式、遍历方式、定义方式
- 深度优先遍历
- 二叉树:前中后序递归法:递归三部曲初次亮相
- 二叉树:前中后序迭代法(一):通过栈模拟递归
- 二叉树:前中后序迭代法(二)统一风格
- 广度优先遍历
- 二叉树的层序遍历:通过队列模拟
- 二叉树:是否对称
- 递归:后序,比较的是根节点的左子树与右子树是不是相互翻转
- 迭代:使用队列/栈将两个节点顺序放入容器中进行比较
- 二叉树:求最大深度
- 递归:后序,求根节点最大高度就是最大深度,通过递归函数的返回值做计算树的高度
- 迭代:层序遍历
- 二叉树:求最小深度
- 递归:后序,求根节点最小高度就是最小深度,注意最小深度的定义
- 迭代:层序遍历
- 二叉树:求有多少个节点
- 递归:后序,通过递归函数的返回值计算节点数量
- 迭代:层序遍历
- 二叉树:是否平衡
- 递归:后序,注意后序求高度和前序求深度,递归过程判断高度差
- 迭代:效率很低,不推荐
- 二叉树:找所有路径
- 递归:前序,方便让父节点指向子节点,涉及回溯处理根节点到叶子的所有路径
- 迭代:一个栈模拟递归,一个栈来存放对应的遍历路径
- 二叉树:递归中如何隐藏着回溯
- 详解二叉树:找所有路径中递归如何隐藏着回溯
- 二叉树:求左叶子之和
- 递归:后序,必须三层约束条件,才能判断是否是左叶子。
- 迭代:直接模拟后序遍历
- 二叉树:求左下角的值
- 递归:顺序无所谓,优先左孩子搜索,同时找深度最大的叶子节点。
- 迭代:层序遍历找最后一行最左边
- 二叉树:求路径总和
- 递归:顺序无所谓,递归函数返回值为bool类型是为了搜索一条边,没有返回值是搜索整棵树。
- 迭代:栈里元素不仅要记录节点指针,还要记录从头结点到该节点的路径数值总和
- 翻转二叉树
- 递归:前序,交换左右孩子
- 迭代:直接模拟前序遍历
- 构造二叉树
- 递归:前序,重点在于找分割点,分左右区间构造
- 迭代:比较复杂,意义不大
- 构造最大的二叉树
- 递归:前序,分割点为数组最大值,分左右区间构造
- 迭代:比较复杂,意义不大
- 合并两个二叉树
- 递归:前序,同时操作两个树的节点,注意合并的规则
- 迭代:使用队列,类似层序遍历
-
- 递归:二叉搜索树的递归是有方向的
- 迭代:因为有方向,所以迭代法很简单
-
- 递归:中序,相当于变成了判断一个序列是不是递增的
- 迭代:模拟中序,逻辑相同
-
- 递归:中序,双指针操作
- 迭代:模拟中序,逻辑相同
-
-
递归:中序,清空结果集的技巧,遍历一遍便可求众数集合
-
递归:中序,双指针操作累加
-
迭代:模拟中序,逻辑相同
-
- 二叉树的公共祖先问题
- 递归:后序,回溯,找到左子树出现目标值,右子树节点目标值的节点。
- 迭代:不适合模拟回溯
- 二叉搜索树的公共祖先问题
- 递归:顺序无所谓,如果节点的数值在目标区间就是最近公共祖先
- 迭代:按序遍历
- 二叉搜索树中的插入操作
- 递归:顺序无所谓,通过递归函数返回值添加节点
- 迭代:按序遍历,需要记录插入父节点,这样才能做插入操作
- 二叉搜索树中的删除操作
- 递归:前序,想清楚删除非叶子节点的情况
- 迭代:有序遍历,较复杂
- 修剪二叉搜索树
- 递归:前序,通过递归函数返回值删除节点
- 迭代:有序遍历,较复杂
- 构造二叉搜索树
- 递归:前序,数组中间节点分割
- 迭代:较复杂,通过三个队列来模拟
大家以上题目都做过了,也一定要看如下阶段小结。
每周小结都会对大家的疑问做统一解答,并且对每周的内容进行拓展和补充,所以一定要看,将细碎知识点一网打尽!
在二叉树题目选择什么遍历顺序是不少同学头疼的事情,我们做了这么多二叉树的题目了,Carl给大家大体分分类。
-
涉及到二叉树的构造,无论普通二叉树还是二叉搜索树一定前序,都是先构造中节点。
-
求普通二叉树的属性,一般是后序,一般要通过递归函数的返回值做计算。
-
求二叉搜索树的属性,一定是中序了,要不白瞎了有序性了。
注意在普通二叉树的属性中,我用的是一般为后序,例如单纯求深度就用前序,二叉树:找所有路径也用了前序,这是为了方便让父节点指向子节点。
所以求普通二叉树的属性还是要具体问题具体分析。
二叉树专题汇聚为一张图:
最后,二叉树系列就这么完美结束了,估计这应该是最长的系列了,感谢大家33天的坚持与陪伴,接下来我们又要开始新的系列了「回溯算法」!
Java:
Python:
Go: