forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
queryinst_r50_fpn_300-proposals_crop-ms-480-800-3x_coco.py
47 lines (46 loc) · 1.88 KB
/
queryinst_r50_fpn_300-proposals_crop-ms-480-800-3x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
_base_ = './queryinst_r50_fpn_ms-480-800-3x_coco.py'
num_proposals = 300
model = dict(
rpn_head=dict(num_proposals=num_proposals),
test_cfg=dict(
_delete_=True,
rpn=None,
rcnn=dict(max_per_img=num_proposals, mask_thr_binary=0.5)))
# augmentation strategy originates from DETR.
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomFlip', prob=0.5),
dict(
type='RandomChoice',
transforms=[[
dict(
type='RandomChoiceResize',
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
keep_ratio=True)
],
[
dict(
type='RandomChoiceResize',
scales=[(400, 1333), (500, 1333), (600, 1333)],
keep_ratio=True),
dict(
type='RandomCrop',
crop_type='absolute_range',
crop_size=(384, 600),
allow_negative_crop=True),
dict(
type='RandomChoiceResize',
scales=[(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
keep_ratio=True)
]]),
dict(type='PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))