forked from Azukix/TL-MT-Bio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RGCNKOW.py
159 lines (132 loc) · 6.1 KB
/
RGCNKOW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import warnings
warnings.filterwarnings("ignore")
import numpy as np
from utils import build_dataset
import torch
from torch.optim import Adam
from torch.utils.data import DataLoader
from utils.MY_GNN import collate_molgraphs, EarlyStopping, run_a_train_epoch_heterogeneous, \
run_an_eval_epoch_heterogeneous, set_random_seed, MGA, pos_weight
import os
import time
import pandas as pd
torch.cuda.empty_cache()
start = time.time()
# fix parameters of model
args = {}
args['device'] = "cuda" if torch.cuda.is_available() else "cpu"
args['atom_data_field'] = 'atom'
args['bond_data_field'] = 'etype'
args['classification_metric_name'] = 'roc_auc'
args['regression_metric_name'] = 'r2'
# model parameter
args['num_epochs'] = 300
args['patience'] = 50
args['batch_size'] = 128
args['mode'] = 'higher'
args['in_feats'] = 40
args['rgcn_hidden_feats'] = [512, 512]
args['classifier_hidden_feats'] = 256
args['rgcn_drop_out'] = 0.2
args['drop_out'] = 0.2
args['lr'] = 3
args['weight_decay'] = 5
args['loop'] = True
# task name (model name)
args['task_name'] = 'KOW3-512512256' # change
args['data_name'] = 'KOWall3' # change
args['times'] = 10
# selected task, generate select task index, task class, and classification_num
# just select specific task
args['select_task_list'] = ['KOW'] # change
args['select_task_index'] = []
args['classification_num'] = 0
args['regression_num'] = 0
args['all_task_list'] = ['KOW'] # change
# generate select task index
for index, task in enumerate(args['all_task_list']):
if task in args['select_task_list']:
args['select_task_index'].append(index)
# generate classification_num
for task in args['select_task_list']:
if task in []:
args['classification_num'] = args['classification_num'] + 1
if task in ['KOW']:
args['regression_num'] = args['regression_num'] + 1
# generate classification_num
if args['classification_num'] != 0 and args['regression_num'] != 0:
args['task_class'] = 'classification_regression'
if args['classification_num'] != 0 and args['regression_num'] == 0:
args['task_class'] = 'classification'
if args['classification_num'] == 0 and args['regression_num'] != 0:
args['task_class'] = 'regression'
args['bin_path'] = 'data/' + args['data_name'] + '.bin'
args['group_path'] = 'data/' + args['data_name'] + '_group.csv'
result_pd = pd.DataFrame(columns=args['select_task_list']+['group'] + args['select_task_list']+['group']
+ args['select_task_list']+['group'])
all_times_train_result = []
all_times_val_result = []
all_times_test_result = []
for time_id in range(args['times']):
set_random_seed(2020+time_id)
one_time_train_result = []
one_time_val_result = []
one_time_test_result = []
print('***************************************************************************************************')
print('{}, {}/{} time'.format(args['task_name'], time_id+1, args['times']))
print('***************************************************************************************************')
train_set, val_set, test_set, task_number = build_dataset.load_graph_from_csv_bin_for_splited(
bin_path=args['bin_path'],
group_path=args['group_path'],
select_task_index=args['select_task_index']
)
print("Molecule graph generation is complete !")
train_loader = DataLoader(dataset=train_set,
batch_size=args['batch_size'],
shuffle=True,
collate_fn=collate_molgraphs)
val_loader = DataLoader(dataset=val_set,
batch_size=args['batch_size'],
shuffle=True,
collate_fn=collate_molgraphs)
test_loader = DataLoader(dataset=test_set,
batch_size=args['batch_size'],
collate_fn=collate_molgraphs)
pos_weight_np = pos_weight(train_set, classification_num=args['classification_num'])
loss_criterion_c = torch.nn.BCEWithLogitsLoss(reduction='none', pos_weight=pos_weight_np.to(args['device']))
loss_criterion_r = torch.nn.MSELoss(reduction='none')
model = MGA(in_feats=args['in_feats'], rgcn_hidden_feats=args['rgcn_hidden_feats'],
n_tasks=task_number, rgcn_drop_out=args['rgcn_drop_out'],
classifier_hidden_feats=args['classifier_hidden_feats'], dropout=args['drop_out'],
loop=args['loop'])
optimizer = Adam(model.parameters(), lr=10**-args['lr'], weight_decay=10**-args['weight_decay'])
stopper = EarlyStopping(patience=args['patience'], task_name=args['task_name'], mode=args['mode'])
model.to(args['device'])
for epoch in range(args['num_epochs']):
# Train
run_a_train_epoch_heterogeneous(args, epoch, model, train_loader, loss_criterion_c, loss_criterion_r, optimizer)
# Validation and early stop
validation_result = run_an_eval_epoch_heterogeneous(args, model, val_loader)
val_score = np.mean(validation_result)
early_stop = stopper.step(val_score, model)
print('epoch {:d}/{:d}, validation {:.4f}, best validation {:.4f}'.format(
epoch + 1, args['num_epochs'],
val_score, stopper.best_score)+' validation result:', validation_result)
if early_stop:
break
stopper.load_checkpoint(model)
test_score = run_an_eval_epoch_heterogeneous(args, model, test_loader)
train_score = run_an_eval_epoch_heterogeneous(args, model, train_loader)
val_score = run_an_eval_epoch_heterogeneous(args, model, val_loader)
# deal result
result = train_score + ['training'] + val_score + ['valid'] + test_score + ['test']
result_pd.loc[time_id] = result
print('********************************{}, {}_times_result*******************************'.format(args['task_name'], time_id+1))
print("training_result:", train_score)
print("val_result:", val_score)
print("test_result:", test_score)
result_pd.to_csv('result/' + args['task_name']+'_result.csv', index=None)
elapsed = (time.time() - start)
m, s = divmod(elapsed, 60)
h, m = divmod(m, 60)
print("Time used:", "{:d}:{:d}:{:d}".format(int(h), int(m), int(s)))