You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
i use helm to install k8s-vgpu-scheduler, set devicePlugin.deviceSplitCount = 5. after deployed successfully, i run 'kubectl describe node ', i can see the allocatable resources 'nvidia.com/gpu' count 40 (it has 8 A40 card in machine). Then i create 6 pod, every pod assign 1 'nvidia.com/gpu', but when i create a pod which needs 3 'nvidia.com/gpu',the k8s said the pod can't not be schedulerd.
i use helm to install k8s-vgpu-scheduler, set devicePlugin.deviceSplitCount = 5. after deployed successfully, i run 'kubectl describe node ', i can see the allocatable resources 'nvidia.com/gpu' count 40 (it has 8 A40 card in machine). Then i create 6 pod, every pod assign 1 'nvidia.com/gpu', but when i create a pod which needs 3 'nvidia.com/gpu',the k8s said the pod can't not be schedulerd.
the logs of vgpu-scheduler is showed below, it seems said only 2 gpu card can usable?
I0313 00:58:35.594437 1 score.go:65] "devices status" I0313 00:58:35.594467 1 score.go:67] "device status" device id="GPU-0707087e-8264-4ba4-bc45-30c70272ec4a" device detail={"Id":"GPU-0707087e-8264-4ba4-bc45-30c70272ec4a","Index":0,"Used":0,"Count":10,"Usedmem":0,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594519 1 score.go:67] "device status" device id="GPU-b3e35ad4-81ee-0aee-9865-4787748b93ce" device detail={"Id":"GPU-b3e35ad4-81ee-0aee-9865-4787748b93ce","Index":1,"Used":0,"Count":10,"Usedmem":0,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594542 1 score.go:67] "device status" device id="GPU-d38a391c-9f2f-395e-2f91-1785a648f6c4" device detail={"Id":"GPU-d38a391c-9f2f-395e-2f91-1785a648f6c4","Index":2,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594568 1 score.go:67] "device status" device id="GPU-7099a282-5a75-55f8-0cd0-a4b48098ae1e" device detail={"Id":"GPU-7099a282-5a75-55f8-0cd0-a4b48098ae1e","Index":3,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594600 1 score.go:67] "device status" device id="GPU-56967eb2-30b7-c808-367a-225b8bd8a12e" device detail={"Id":"GPU-56967eb2-30b7-c808-367a-225b8bd8a12e","Index":4,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594639 1 score.go:67] "device status" device id="GPU-54191405-e5a9-2f7b-8ac4-f4e86c6669cb" device detail={"Id":"GPU-54191405-e5a9-2f7b-8ac4-f4e86c6669cb","Index":5,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594671 1 score.go:67] "device status" device id="GPU-e731cd15-879f-6d00-485d-d1b468589de9" device detail={"Id":"GPU-e731cd15-879f-6d00-485d-d1b468589de9","Index":6,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594693 1 score.go:67] "device status" device id="GPU-865edbf8-5d63-8e57-5e14-36682179eaf6" device detail={"Id":"GPU-865edbf8-5d63-8e57-5e14-36682179eaf6","Index":7,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594725 1 score.go:90] "Allocating device for container request" pod="default/gpu-pod-2" card request={"Nums":5,"Type":"NVIDIA","Memreq":0,"MemPercentagereq":100,"Coresreq":0} I0313 00:58:35.594757 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=5 device index=7 device="GPU-b3e35ad4-81ee-0aee-9865-4787748b93ce" I0313 00:58:35.594800 1 score.go:140] "first fitted" pod="default/gpu-pod-2" device="GPU-b3e35ad4-81ee-0aee-9865-4787748b93ce" I0313 00:58:35.594829 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=4 device index=6 device="GPU-0707087e-8264-4ba4-bc45-30c70272ec4a" I0313 00:58:35.594850 1 score.go:140] "first fitted" pod="default/gpu-pod-2" device="GPU-0707087e-8264-4ba4-bc45-30c70272ec4a" I0313 00:58:35.594869 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=5 device="GPU-865edbf8-5d63-8e57-5e14-36682179eaf6" I0313 00:58:35.594889 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=4 device="GPU-e731cd15-879f-6d00-485d-d1b468589de9" I0313 00:58:35.594911 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=3 device="GPU-54191405-e5a9-2f7b-8ac4-f4e86c6669cb" I0313 00:58:35.594929 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=2 device="GPU-56967eb2-30b7-c808-367a-225b8bd8a12e" I0313 00:58:35.594948 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=1 device="GPU-7099a282-5a75-55f8-0cd0-a4b48098ae1e" I0313 00:58:35.594966 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=0 device="GPU-d38a391c-9f2f-395e-2f91-1785a648f6c4" I0313 00:58:35.594989 1 score.go:211] "calcScore:node not fit pod" pod="default/gpu-pod-2" node="gpu-230"
the kubectl describe node gpu-230 said:
the nvidia-smi said:
so somebody can solve this issue? thanks
The text was updated successfully, but these errors were encountered: