forked from shelhamer/fcn.berkeleyvision.org
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solve.py
38 lines (28 loc) · 1016 Bytes
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import caffe
import surgery, score
import numpy as np
import os
import setproctitle
setproctitle.setproctitle(os.path.basename(os.getcwd()))
color_proto = '../nyud-rgb-32s/trainval.prototxt'
color_weights = '../nyud-rgb-32s/nyud-rgb-32s-28k.caffemodel'
hha_proto = '../nyud-hha-32s/trainval.prototxt'
hha_weights = '../nyud-hha-32s/nyud-hha-32s-60k.caffemodel'
# init
caffe.set_device(int(sys.argv[1]))
caffe.set_mode_gpu()
solver = caffe.SGDSolver('solver.prototxt')
# surgeries
color_net = caffe.Net(color_proto, color_weights, caffe.TEST)
surgery.transplant(solver.net, color_net, suffix='color')
del color_net
hha_net = caffe.Net(hha_proto, hha_weights, caffe.TEST)
surgery.transplant(solver.net, hha_net, suffix='hha')
del hha_net
interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
surgery.interp(solver.net, interp_layers)
# scoring
test = np.loadtxt('../data/nyud/test.txt', dtype=str)
for _ in range(50):
solver.step(2000)
score.seg_tests(solver, False, val, layer='score')