-
Notifications
You must be signed in to change notification settings - Fork 3
/
llava_util.py
167 lines (141 loc) · 5.19 KB
/
llava_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# This file is modified from https://github.com/haotian-liu/LLaVA/
import argparse
import torch
from transformers import TextStreamer
from llava.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
KeywordsStoppingCriteria,
)
import requests
from PIL import Image
from io import BytesIO
import re
def run_llava(model_path, conv_mode, query, images, sep=",", temperature=0.2, top_p=None, num_beams=1, max_new_tokens=512, model_base=None, device="cuda:0"):
args = argparse.Namespace(
model_path=model_path,
model_base=model_base,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
conv_mode=conv_mode,
query=query,
images=images,
sep=sep,
device=device
)
return eval_model(args)
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def load_images(image_files):
out = []
for image_file in image_files:
image = load_image(image_file)
out.append(image)
return out
llavamodel = None
def eval_model(args):
# Model
disable_torch_init()
global llavamodel
model_name = get_model_name_from_path(args.model_path)
if llavamodel is None:
llavamodel = load_pretrained_model(
args.model_path, args.model_base, model_name, device=args.device
)
tokenizer, model, image_processor, context_len = llavamodel
qs = args.query
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
if IMAGE_PLACEHOLDER in qs:
if model.config.mm_use_im_start_end:
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
else:
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
else:
if DEFAULT_IMAGE_TOKEN not in qs:
if model.config.mm_use_im_start_end:
qs = image_token_se + "\n" + qs
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
if "llama-2" in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
pass
#print(
# "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
# conv_mode, args.conv_mode, args.conv_mode
# )
#)
else:
args.conv_mode = conv_mode
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
images_tensor = process_images(
args.images,
image_processor,
model.config
).to(args.device, dtype=torch.float16)
input_ids = (
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.to(args.device)
)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images_tensor,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
#top_p=args.top_p,
#num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
use_cache=True,
#stopping_criteria=[stopping_criteria],
streamer=streamer,
image_sizes=[image.size for image in args.images]
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
return outputs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-file", type=str, required=True)
parser.add_argument("--query", type=str, required=True)
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--sep", type=str, default=",")
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=512)
args = parser.parse_args()
eval_model(args)