-
Notifications
You must be signed in to change notification settings - Fork 0
/
json2coco.py
167 lines (142 loc) · 4.9 KB
/
json2coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# !/usr/bin/env python
import argparse
import collections
import datetime
import glob
import json
import os
import os.path as osp
import sys
import cv2
import numpy as np
import PIL.Image
import labelme
try:
import pycocotools.mask
except ImportError:
print('Please install pycocotools:\n\n pip install pycocotools\n')
sys.exit(1)
def process(labels, input_dir, output_dir):
os.makedirs(output_dir, exist_ok=True)
os.makedirs(osp.join(output_dir, 'JPEGImages'), exist_ok=True)
print('Creating dataset:', output_dir)
now = datetime.datetime.now()
data = dict(
info=dict(
description=None,
url=None,
version=None,
year=now.year,
contributor=None,
date_created=now.strftime('%Y-%m-%d %H:%M:%S.%f'),
),
licenses=[dict(
url=None,
id=0,
name=None,
)],
images=[
# license, url, file_name, height, width, date_captured, id
],
type='instances',
annotations=[
# segmentation, area, iscrowd, image_id, bbox, category_id, id
],
categories=[
# supercategory, id, name
],
)
class_name_to_id = {}
for i, line in enumerate(open(labels).readlines()):
class_id = i + 1 # starts with -1
class_name = line.strip()
# if class_id == -1:
# assert class_name == '__ignore__'
# continue
class_name_to_id[class_name] = class_id
data['categories'].append(dict(
supercategory=None,
id=class_id,
name=class_name,
))
out_ann_file = osp.join(output_dir, 'annotations.json')
label_files = glob.glob(
osp.join(input_dir.replace("images", "labels"), '*.json'))
for image_id, label_file in enumerate(label_files):
print('Generating dataset from:', label_file)
with open(label_file) as f:
label_data = json.load(f)
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
output_dir, 'JPEGImages', base + '.jpg'
)
img_file = osp.join(
osp.dirname(label_file), label_data['imagePath']
)
img = np.asarray(PIL.Image.open(img_file))
img = cv2.imread(img_file)
# PIL.Image.fromarray(img).save(out_img_file)
cv2.imwrite(out_img_file, img)
data['images'].append(dict(
license=0,
url=None,
file_name=osp.relpath(out_img_file, osp.dirname(out_ann_file)),
height=img.shape[0],
width=img.shape[1],
date_captured=None,
id=image_id,
))
masks = [] # for area
segmentations = collections.defaultdict(list) # for segmentation
for shape in label_data['shapes']:
points = shape['points']
# print (points)
# 0/0
label = shape['label']
shape_type = shape.get('shape_type', None)
mask = labelme.utils.shape_to_mask(
img.shape[:2], points, shape_type
)
# if label in masks:
# masks[label].append(masks[label][0])
# else:
# masks[label] = [mask]
points = np.asarray(points).flatten().tolist()
masks.append([label, mask, points])
# segmentations[label].append(points)
for label, mask, points in masks:
cls_name = label.split('-')[0]
if cls_name not in class_name_to_id:
continue
cls_id = class_name_to_id[cls_name]
mask = np.asfortranarray(mask.astype(np.uint8))
mask = pycocotools.mask.encode(mask)
area = float(pycocotools.mask.area(mask))
bbox = pycocotools.mask.toBbox(mask).flatten().tolist()
bbox = cv2.boundingRect(
np.array(points).reshape(-1, 2).astype(int))
data['annotations'].append(dict(
id=len(data['annotations']),
image_id=image_id,
category_id=cls_id,
segmentation=points,
area=area,
bbox=bbox,
iscrowd=0,
))
with open(out_ann_file, 'w') as f:
json.dump(data, f)
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--input_dir', help='input annotated directory')
parser.add_argument('--output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
# if osp.exists(args.output_dir):
# print('Output directory already exists:', args.output_dir)
# sys.exit(1)
process(args.labels, args.input_dir, args.output_dir)
if __name__ == '__main__':
main()